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Cognitive Audio-Visual Associative Memories 
using Brain-inspired Spiking Neural Networks with 

Case Studies on Moving Object Recognition 
Nikola Kasabov, Life Fellow, IEEE, Basabdatta Sen Bhattacharya, Senior Member, IEEE, Dharmik Patel, Naman 

Aggarwal, Tanmay Bankar, Iman AbouHassan

Abstract—The paper introduces for the first time a framework 
for cogntive audio-visual associative memories based on 
brain-inspired spiking neural networks. The work is inspired 
by the associative memory ability of the human brain to 
integrated both audio and visual information for a 
better performance on classification, identification or 
prediction tasks. When using only one of the modalities for a 
recall of such a model its performance can still be better than 
using a single modality for these tasks. Our framework 
is based on the NeuCube brain-inspired SNN 
architecture, where audio- and visual streaming data are 
entered in a synchronised way into the areas of 3D SNN 
model that correspond to the auditory and the visual 
cortex according to a predefined brain template. The 
framework is manifested on two case study data of moving 
object recognition, incorporating video and audio 
information, and recalling the models on only one of the 
modalities. The results demonstrate the potential of the 
introduced cognitive framework and its applicability for 
predictive modeling in wider areas of autonomous robots 
and vehicles, cognitive studies; assistive aids for  blind and deaf 
people, security systems and other.  The models can be incrementally 
developed to learn and recognise new audio-visual categories.

Index Terms—cogntive computing; spiking neural networks, 
audio-visual associative memory, moving object recognition.

I. INTRODUCTION

THE brain integrates both sounds and images in a natural
way to achieve better and faster recognition and location

in the environment [1]. The auditory system in the brain not
only deals with sound recognition but also performs source
localization within a frequency range. The visual system 
allows us to perceive the environment. Both auditory and 
visual systems play a critical role in survival and motion 
detection.
--------------------------
N.K. Kasabov* (nkasabov@aut.ac.nz) is a Professor with the School of 
Engineering, Computer and Mathematical Science, Auckland University of 
Technology, AUT WZ building, St. Paul, Auckland,1010, New 
Zealand. He is also Chair Professor with the Intelligent Systems 
Research Centre at University of Ulster UK, and Visiting Professor with 
the Institute for Information and Communication technologies (IICT) 
Bulgarian Academy of Sciences and with Dalian University, China. He is 
Honorary Professor of the University of Auckland, NZ and Teesside 
University UK.

B. Sen Bhattacharya (basabdattab@goa.bits-pilani.ac.in) is an Associate 
Professor with the Department of Computer Science and Information Systems, 
Birla Institute of Technology and Science (BITS) Pilani, Goa Campus, Goa, 
India.

D. Patel, N. Aggarwal and T. Bankar are undergraduate students with the 
Department of Computer Science and Information Systems, BITS Pilani, Goa 
Campus, Goa, India.

I. AbouHassan (iabouhassan@tu-sofia.bg) is a Ph.D. candidate at the Tech-
nical University of Sofia, Bulgaria, and holds a senior position at Lebanon’s 
Central Bank, Beirut, Lebanon (iabouhassan@bdl.gov.lb).

The image on the retina is transmitted via the optic nerve to 
the occipital lobe which is the seat of the visual cortex. It 
is here that the ‘what’ (recognition) and 
‘where’ (localization) tracts are separated. It is still a 
fundamental question as to how the eyes and the ears work 
in synchrony for audio-visual (AV) signal 
integration and perception, but there are several 
mathematical and engineering approaches to integrate both 
modalities [2] [3]. Today, brain-inspired artificial 
intelligence is a much sought-after field [1]. In this 
regard, one critical question that needs answering is how 
we can utilize the efficient multi-modal information 
processing techniques of the brain to develop efficient 
machine learning algorithms. It is important that such 
systems are non-greedy in terms of power 
consumption, and can be easily adapted to run on green energy 
[4-13]. This project develops the world’s first 
cognitive audio-visual associative memory based 
on brain-inspired spiking neural networks, called here 
CAViAM. It uses the NeuCube SNN architecture [14] 
[1] that is suitable for neuromorphic implementation [11] 
[17]. The latter is known for massively parallel and fast 
information processing and for low power consumption. 
As a feasibility study, we demonstrate the applicability 
of our method in two case studies, where audio-visual 
information is used to train a system for object 
recognition and then only one of the modalities is used 
to recall the system without sacrificing the recognition 
accuracy. Multi-sensory information processing 
architectures have been around for some time [15,16]. 
Previous works have investigated this area using a 
frame-based representation of audio and visual data 
using fuzzy neural networks [2] and evolving Spiking 
Neural Networks (SNN) [3]. SNNs use spikes at 
times for infoprmtion representation that allows for 
event-based signal processing. However, there are no 
existing methods for cognitive audio-visual associative 
memories based on brain-inspired SNN. 

Our proposed CAViAM architecture will be the first 
using multi-modal spatio-temporal streaming data allowing 
for implementaion on low energy consuming neuromorphic 
hadware platforms. SNN are the ‘next 
generation’ neural networks that use biologically 
inspired events, commonly termed as spikes, to 
communicate amongst themselves, but in a ‘need-based’ 
manner. In doing so, they implement sparse computation 
and save energy. The challenge 
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is to implement the architecture in a real-time. Our 
proposed architecture will be demonstrated for object 
recognition on-line in response to streaming multi-modal data, 
but its applications span across areas of robotics, cognitive 
studies, security, environment, unmanned vehicles, etc.

The paper is organized as follows. Section two presents 
some main principles of spiking neural networks and the brain-
inspired NeuCube architecture. Section 3 reveals the proposed 
CAViAM model. Section 4 presents experimental results 
with two audio-visual data sets for object recognition. Section 
5 presents some notions related to implementing 
CAViAM models on neuromorphic platforms and section 6 
is the discussion and future work part.

II. SPIKING NEURAL NETWORKS AND THE
BRAIN-INSPIRED NEUCUBE ARCHITECTURE

A. Spiking Neural Networks (SNN)

Spiking neural networks (SNN) are biologically inspired
ANN where information is represented as binary events 
(spikes), similar to the event potentials in the brain, and 
learning is also inspired by principles in the brain. SNNs are 
also universal computational mechanisms. Learning in SNN 
relates to changes in the connection weights between two 
spiking neurons. Many learning paradigms, such as STDP, are 
inspired by the Hebbian learning principle [1, 22], in which the 
synaptic weights are adjusted based on the tem-poral order of 
the incoming spike (pre-synaptic) and the output spike (post-
synaptic). This synaptic weight adjustment determines synaptic 
potentiation known as long-term potential (LTP) if the synaptic 
weight is increasing (positive change) and synaptic depression 
known as long-term depression (LTD) if the synaptic weight is 
decreasing (negative change). A particular connection is said to 
potentiate if a pre-synaptic spike arrives before a post-synaptic 
spike and is said to depress if it arrives after a post-synaptic 
spike. STDP is expressed in terms of STDP learning window W 
(tpre−tpost) in which the difference between arrival time of the 
pre-synaptic spike and the arrival time of the post-synaptic 
spike will determine the synaptic weight (Equation 1). In the 
equation, τ+ and τ− refer to the pre-synaptic and post-synaptic 
time interval, and A+ and A− refer to the maximum fraction of 
synaptic adjustment if tpre<tpost approaches to zero.

W (tpre−tpost) =

{
A+exp(

tpre−tpost
τ+

), if tpre < tpost

A−exp(− tpre−tpost
τ−

), if tpre > tpost
(1)

Izhikevich [22] has shown that similar activation patterns 
(called ‘polychronous waves’) can be generated in a SNN 
reservoir with recurrent connections to represent short term 
memory. This is a further extension of the ‘synfire chain’ 
theory by Abeles [19]. When using STDP learning, connection 
weights change to form LTP or LTD, which constitute long-
term memory. Learned chains of connections can be 
‘stitched together’ when additional data is used for further 
training. These previous results suggest that a SNN archi-
tecture can be explored for learning long (spatio-) temporal 
patterns and to be used as associative memory.

Fig. 1. The NeuCube brain-inspired SNN architecture (from [14]).

B. NeuCube

The NeuCube architecture is depicted in Fig.1. It consists
of the following functional modules [14]:

- Input data encoding module;
- 3D SNN reservoir module (SNNc);
- Output function (classification) module;
- Gene regulatory network (GRN) module (optional);
- Parameter optimization module (optional).
The table below describes the functionality of the NeuCube

(from [14] [1] [34]).
1) Temporal inputs (features) are converted into spike trains

( [1] [20]).
2) Inputs are mapped spatially (brain-like) into a 3D

SNNcube that consists of spiking neurons spatially orga-
nized in a topological 3D map. For modelling brain data
the SNNcube is built with the use of a brain template
(e.g. [27-29]).

3) Output classifier/regressor SNN is connected to neurons
from the SNNcube, e.g. deSNN ( [1]).

4) SNNcube structure is organized as small world connec-
tivity 3D structure of spiking neurons.

5) Unsupervised learning is performed in the SNNcube
using STDP.

6) Supervised learning is performed in the output SNN
module, e.g. deSNN for classification.

7) Adaptive, deep learning of complex spatio-temporal
patterns is performed in the SNNcube.

8) The BI-SNN operates in a fast, incremental learning
mode.

9) The learned connectivity patterns in the SNNcube can be
interpreted as deep knowledge representing deep spatio-
temporal patterns in the data.

10) Learned connectivity patterns in the eSNN output mod-
ule can be interpreted for rule extraction related to
outputs.

The brain-inspired NeuCube SNN architecture has been
used for brain-data modelling along with other applications
[1] . NeuCube has been used for retinotopic mapping and
recognition of moving digits [9] and for tonotpic mappig and 
recognition of musical signals [23] [1] . Recently, NeuCube 
has been used for the creation of spatio-temporal memories 
(STAM-SNN) [35], used for neuro-imaging data [36] and for 
the prediction of time series [37].

III. THE PROPOSED CAVIAM Framework
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Fig. 2. A schematic diagram of the proposed CAViAM framework

MODEL BASED ON NEUCUBE

A. A general architecture of CAViAM

Here we propose a general method for the realization of 
CAViAM for classification of AV data on the NeuCube 

brain-inspired SNN. The proposed CAViAM architecture 
consists of the following modules (Fig.2.) :

1) Input audio and visual modules
2) Brain Inspired SNN
3) An output activation module.
The CAViAM follows how the human

brain integrates audio and visual information and is based 
on the NeuCube architecture, as this architecture enables 
brain-like information processing. Each spiking unit 
simulates tightly packed meso-scale neuronal populations, 
and both short- and long-distance brain connectivity can be 
simulated.

B. Mapping integrated visual and audio streaming data into
CAViAM-SNN model

The projection of visual spike data to a SNNcube is inspired 
by the proportion of projections that are made in the brain 
by the retina and cochlea to the visual and auditory cortex 
respectively, both signals traveling via the thalamus. Also, the 
retinal inputs are filtered by center-surround receptive fields in 
the retina and the thalamus and also taking into account 
peripheral vision, in addition to foveal processing, that will 
complement the sound recordings from the environment. An 
important characteristic of human vision is the very fast and 
simultaneous movement of both eyes, called saccades. 
Saccades help to scan a broader part of the visual field with 
the fovea and integrate this information into a detailed map. 
These mechanisms for eye movement are implemented in 
the spike encoding algorithm by changing the coordinates for 
the pooling of the visual pixels for each time step, thereby 
virtually moving the center of the visual field (see Fig.3 
(from [9] [1]).

In terms of mapping the encoded into spikes audio infor-
mation, synchronized with the video one, we use the same 
principle as shown in Figs. 4 [23, 1]. The brain forms deep 
neuronal structures when perceives audio information (Fig.5). 
The advantage of using NeuCube is that its Talairach brain 
template [29] allows a mapping of the transformed stereo-
auditory signals to their corresponding brain regions. The 
experimental results from

Fig. 3. Mapping visual information in the SNNcube area that corresponds to 
the visual cortex using the Talairach human brain template (from [9]).

Fig. 4. The flowchart of an exemplified mapping of sound into CAViAM 
through cochlear simulator (from [23] [1])

Fig. 5. Tonotopic stereo mapping of sound through cochleograms as part of 
the SNNcube (from [23] [1]).

previous works confirm that using such a setup with stereo 
and tonotopic mapping of sound is a promising approach that 
still needs to be explored further for multi-sensory integration 
such as the proposed here - Fig.5.

After mapping AV signals, the NeuCube model will be 
trained to learn the association of these signals in relation to 
a defined output (e.g. moving object recognition) as explained 
below.

C. Learning and classification o f i n tegrated AV d a ta in a 
CAViAM model

Our first hypothesis is that, similar to how the human brain 
works, using two AV modalities, if we train an CAViAM 
classification system it will result in a better accuracy 
when compared with a system developed with the use of a 
single modality.

Spatio-temporal patterns from data can be learned in a 
SNNcube. Connections are created and strengthened. Once 
data is learned, the SNN retains the connections as long-term 
memory. Since the SNNcube learns functional pathways of 
spiking activities represented as structural pathways of con-
nections, when only a small initial part of input data is entered 
the SNN will ‘synfire’ and ‘ chain-fire’ learned connection
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pathways to reproduce learned functional pathways. This is 
the rationale for using SNN to realize a CAViAM.

This is demonstrated in experimental Sec. IV case studies.

D. Using one of the modalities to recall a trained CAViAM
model on both modalities

In [22] polychronous neuronal groups are studied. Since the 
number of such groups of synchronously activated neurons 
is very large, this brings a new perspectives of developing 
CAViAM. In principle, CAViAM is a system that is trained 
for classification on all available AV data and recalled on new 
data that contains less number of variables or even missing a 
hole modality. Learning in the SNNcube is spatio-temporal, 
i.e. AV data is first spatially mapped into a brain-template
structured SNNcube as shown above, and then brain-inspired
learning rule is applied to the encoded into spike sequences 
data, that changes the connectivity of the SNNcube in space 
and time.

Based on this unique feature of NeuCube, our second 
hypotheses is that once an CAViAM model is trained on full 
scale AV data for classification, it can generalize on using
only one of the two modalities (A or V) subject to proper
settings and proper data recordings.

The rationale behind the hypothesis is the following. The 
SNNcube is structured, so that it accommodates the structural 
(spatial) information from the data using a suitable brain 
template (e.g. Talairach [29], MNI, MRI, etc) and the AV 
variables are mapped in this structure according to their 
spatial co-ordinates per the used template (auditory cortex 
and visual cortex correspondingly). After that the SNNcube 
is trained with a STDP rule, so that the connection weights 
capture temporal associations between the structurally dis-
tributed neurons, thus reflecting on the spatio/spectro-temporal 
associations in the AV data. Once a SNNcube is trained on 
AV data of time length T, the model can be recalled only 
on one of the modalities and a shorter time length, 
T1<T , as the already created connections during learning 
can be activated even when some input variables are 
missing in the recall procedure following the principles of 
polychronisation and synfire described above. And these 
connections can be activated even for a shorter time of AV 
variables, rather than for the full time used in the training of 
the full model.

This is demonstrated in the experimental section IV on 
two case studies.

IV. EXPERIMENTAL RESULTS WITH TWO AV DATA SETS
FOR MOVING OBJECT RECOGNITION

Two small scale case studies are presented here to demon-
strate the ability of the proposed CAViAM in terms of:

- Integration of audio and visual information for object
recognition;

- Using only one of the modalities to recall a system trained
on both modalities.

In Sec. IV-A, we present our first case with recorded data
of passing aeroplane as a small object, far away from the

Fig. 6. Short-time-Fourier-Transform (STFT) on each 15 s audio segment
containing audio (a) with aeroplane and (b) without aeroplane demonstrates
the time-frequency representation of the recorded signals.

Fig. 7. Synchronised extraction of audio and visual segment from video clips.

viewer who is recording the sound in a noisy environment. In  
Sec. IV-B, our second case is with data of close objects 
exemplified by a moving train.

A. Case Study I - Recognition of a small moving object, far
away from the viewer, and the sound is recorded in a noisy
environment

1) Data Collection: The data consists of a 60 seconds video
of a far away passing plane (a small object) collected by 
the authors (DP and NA) at the BITS Pilani, K K Birla Goa 
Campus, that is close to the Goa Dabolim airport. Thus, the 
video is of one airplane approaching landing. An iPhone 11 
Pro mobile phone camera (12 mega pixels, 1/2.55-inch sensor 
with 1.4µm pixels, 26mm f/1.8-aperture lens) was used for the 
recording; no tripod was used i.e. the phone was hand-held that 
could have added a spatial ‘noise’ during recording.

2) Data pre-processing: An audio-visual clip of 15 seconds
(0:00 to 0:15 s) duration is extracted from the video clip — this 
will constitute the data that we refer to as ‘with plane’. Another 
clip of the same duration (0:18 to 0:33 s) was extracted 
when the plane had passed and there was only environmental 
(background) noise i.e. frames that had the sounds of leaving 
(the camera frame) aeroplane were discarded; this we refer 
to as data ‘without plane’. The extraction was done using the 
librosa library in Python that encodes the audio in .mp3 format 
with the default data sampling rate as 22KHz (22050 data 
points per second). A time-frequency representation of both 
15 s audio segments with plane and without plane are shown 
in Fig. 6. Next, we extracted independent audio and visual 
data segments from each of the two above-mentioned ‘with 
plane’ and ‘without plane’ audio-visual clips such that the data 
are synchronised with one another in time, see Fig. 7. Each 
audio segment extracted from the 15 s audio-visual clip is of 
250 ms duration. Thus, we have 60 audio segments for each 
of the two types of audio-visual clip. Sixty visual segments

Page 4 of 10

IEEE Transactions on Cognitive and Developmental Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

Fig. 8. Twelve features extracted from each of the 250 ms audio segment 
obtained from the 15 second video clip (a) with airplane and (b) without 
airplane. The y-axis is logarithmic scale for easy visualisation. Clearly, the 
overall power is increased during the presence of the plain, in addition to a 
wider frequency band occupancy.

were also extracted where each segment was a snapshot of the
scene at every 250 ms interval, starting from the first 250 ms.

3) Feature Extraction for Audio input: Each of the 60
audio segments had 5513 data points (at the above-mentioned
sampling rate of 22 KHz). We can think of the processed 
audio data as a 60 × 5513 matrix. Thus we had two audio-
data matrices corresponding to ‘with plane’ (Mp) and ‘without 
plane’ (Mnp). Each matrix was passed through a Fast Fourier 
Transform (fft) algorithm using Python Scipy library with 
sampling frequency 22KHz and frequency resolution 0.25 Hz.
This operation mapped M60×5513

p (M60×5513
np ) in the time

domain to F 60×5513
p (F 60×5513

np ) in the frequency domain.
We extracted 12 features from each audio data segment and 

mapped them to the input nodes in the 3D SNN that corre-
spond to the closest auditory areas from the Talairach Daemon 
software [27, 28, 29]. This is of course an approximate mapping 
and it is one of many possible mappings, not necessarily the 
optimal one in terms of classification results. Towards this, 
each row r of the matrix Fp (and Fnp) is mapped to a vector Ir 
∈ R12 ∋ each element of Ir,

Irc =
1

N

N∑
j=1

F r,j
p

where c ∈ {1, 12}, r ∈ {1, 60}, N = 460. The resultant matrix
of feature vectors will be A60×12

p (A60×12
np ), where each row

represents a 250 ms audio segment from the respective 15 s
clipped video. The 60 plots with 12 features each for each of
the two cases are shown in Fig. 8.

4) Feature Extraction for Visual input: The visual ‘snap-
shots’ (see Fig. 7) extracted at every 250 ms from the video
clips were downsampled to 1080 × 1080 frames. Thus, we
had 60 visual frames of each data type viz. with plane
(D1080×1080×60

p ) and without plane (D1080×1080×60
np ). For ho-

mogeneity, we normalise these tensors such that every pixel
value lies between 0 and 1. Our design is to extract 16 features
from each of these 60 frames for projecting to the input nodes
corresponding to the visual cortex on NeuCube. Towards this,
we mapped each adjacent 270 × 270 blocks of a frame to
R1 by averaging all the pixels. The resulting 4 × 4 matrix
is flattened to a 1 × 16 vector. These operations result in
two feature matrices corresponding to with plane (V 60×16

p )
and without plane (V 60×16

np ), where each row of Vp (Vnp)
represent the 16 visual features in the scene extracted after a
250 ms window. The 16 featuires are mapped into the 3D SNN

nmeurons that correspond to the visual cortex. This mapping 
is approximate and not necessarily the optimal on for a brain 
locations or from classification r esults points of v iew. I t i s one 
of many possible mappings and it is used here for the purpose 
of AViAM framework illustration.

5) AViAM Model simulation: We refer to each dataset as
belonging to either Class 1, where the airplane is present, and 
Class 2 otherwise. Training was performed with three different 
datasets viz. audio, visual and audio-visual. All simulation 
parameters were maintained at the default values set on the 
NeuCube simulator [1] [14]. To load the data on to NeuCube, 
we did the following: from the Talairach Daemon atlas, we 
obtained the details of the “nearest gray matter” region in 
the brain corresponding to the co-ordinates of each input 
neuron on NeuCube [27]–[29]. From the total 1485 co-
ordinates that were thus mapped, we identified all the 209 
and 101 co-ordinates corresponding to the temporal and the 
occipital lobes respectively. This was based on our 
experimental design where we assume that: all visual and 
auditory data are being processed at the primary visual and 
auditory cortices respectively, the locations of which are at the 
occipital and temporal lobes respectively of the brain. 
Furthermore, we considered 12 feature vectors for the audio 
signals that were mapped onto 12 of the available 209 
temporal lobe co-ordinates. This was done by visual 
inspection such that the selected nodes were spatially spread 
across the region of the NeuCube that represented the temporal 
lobe. The details of these 12 selected input neuron co-ordinates 
on NeuCube and their mapping to regions indicated by the 
Talairach Daemon brain atlas are shown in Table I. Similar 
mapping was done for the visual features and the details 
are shown in Table II. Thus initialised, the NeuCube is 
now trained and tested with the experimental data and 
results are shown in Table III.

Three sets of training and testing were done: (a) only audio 
feature vectors; (b) only visual features; (c) with both audio-
visual features. The training with audio-visual data was tested 
for a recall under three conditions: (i) only audio data, (ii) 
only video data and (iii) the audio-visual data. All data were 
manually labelled (Truth values 1 and 2 for Classes 1 and 2 
respectively) and the test-train split was 50%. There were 20 
trials for every type of train-test, and the accuracy extracted 
for each trial. esults are discussed in Sec. IV-A6.

6) Results of Case Study I: This is a difficult task, as the
object is small and far away and the recordings of are made 
in a noisy environment. The accuracy obtained demonstrates 
a clear agreement with our Hypotheses 1 and 2. Class 1 
accuracy in Table III correspond to true positives i.e. 
presence of the small object. We see that training and 
testing a CAViAM with both audio and visual data results in a 
higher test accuracy compared to just training with audio or 
visual data. We note that the visual data accuracy is 
closer to, but not greater than when both modalities are 
used. When a CAViAM is trained on both the audio-
visual data, the recall accuracy with partial data is significantly 
higher in the case of audio data than those obtained by 
training with single audio modality. This feature of the model 
may be used for early warning of a far away moving object 
when there is no visibility or for blind people.
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TABLE I
COORDINATES OF THE 12 Cognitive AUDIO FEATURES IN THE 3D SNN AND THEIR CORRESPONDING “NEAREST GREY MATTER” REGION FROM THE 

TALAIRACH BRAIN DAEMON ATLAS [27-29].THIS IS ONLY AN EXEMPLAR TONOTOPIC MAPPING OF SMALL NUMER OF COGNITIVE AUDIO  FEATURES. 

.

Feature
neuron indx

Record
no. X coorY coorZ coor Level 1 Level 2 Level 3 Level 4 Level 5

a1 1 -60 -60 0 Left CerebrumTemporal Lobe Middle Temporal Gyrus Gray Matter Brodmann area 21
a2 18 -60 -30 10 Left CerebrumTemporal Lobe Superior Temporal Gyrus White Matter *
a3 32 -60 -10 10 Left CerebrumTemporal LobeTransverse Temporal Gyrus Gray Matter Brodmann area 42
a4 67 -50 -60 -10 Left CerebrumTemporal Lobe Inferior Temporal Gyrus White Matter *
a5 83 -50 -40 -10 Left CerebrumTemporal Lobe Middle Temporal Gyrus White Matter *
a6 100 -50 -20 -10 Left CerebrumTemporal Lobe Sub-Gyral White Matter *
a7 118 -50 0 -10 Left CerebrumTemporal Lobe Superior Temporal Gyrus White Matter *
a8 168 -40 -70 30 Left CerebrumTemporal Lobe Angular Gyrus White Matter *
a9 201 -40 -30 -10 Left CerebrumTemporal Lobe Sub-Gyral White Matter *
a10 238 -40 10 -30 Left CerebrumTemporal Lobe Superior Temporal Gyrus Gray Matter Brodmann area 38
a11 304 -30 -50 0 Left CerebrumTemporal Lobe Sub-Gyral White Matter *
a12 425 -20 -60 20 Left CerebrumTemporal Lobe Sub-Gyral White Matter *

TABLE II
COORDINATES OF THE 16 Cognitive VISUAL FEATURES IN THE 3D SNN AND THEIR CORRESPONDING “NEAREST GREY MATTER” REGIONS FROM 

THE TALAIRACH BRAIN DAEMON ATLAS.THIS IS ONLY AN EXEMPLAR RETINOTOPIC MAPPING OF A SMALL NUMBER OF FEATURES.

Feature
neuron indx

Record
No. X coorY coorZ coor Level 1 Level 2 Level 3 Level 4 Level 5

v1 54 -50 -80 0 Left Cerebrum Occipital Lobe Middle Occipital Gyrus Gray Matter Brodmann area 19
v2 60 -50 -70 0 Left Cerebrum Occipital LobeInferior Temporal GyrusWhite Matter *
v3 158 -40 -80 10 Left Cerebrum Occipital Lobe Middle Occipital Gyrus White Matter *
v4 165 -40 -70 0 Left Cerebrum Occipital LobeInferior Temporal GyrusWhite Matter *
v5 183 -40 -50 -10 Left Cerebrum Occipital Lobe Sub-Gyral White Matter *
v6 277 -30 -80 10 Left Cerebrum Occipital Lobe Middle Occipital Gyrus White Matter *
v7 285 -30 -70 0 Left Cerebrum Occipital Lobe Sub-Gyral White Matter *
v8 405 -20 -80 10 Left Cerebrum Occipital Lobe Cuneus Gray Matter Brodmann area 17
v9 414 -20 -70 10 Left Cerebrum Occipital Lobe Cuneus Gray Matter Brodmann area 30
v10 422 -20 -60 -10 Left Cerebrum Occipital Lobe Fusiform Gyrus * *
v11 538 -10 -80 10 Left Cerebrum Occipital Lobe Cuneus Gray Matter Brodmann area 17
v12 547 -10 -70 10 Left Cerebrum Occipital Lobe Cuneus Gray Matter Brodmann area 30
v13 670 0 -80 20 Left Cerebrum Occipital Lobe Cuneus * *
v14 798 10 -80 0 Right CerebrumOccipital Lobe Lingual Gyrus White Matter *
v15 809 10 -70 20 Right CerebrumOccipital Lobe Cuneus * *
v16 930 20 -80 0 Right CerebrumOccipital Lobe Lingual Gyrus White Matter *

TABLE III
MODEL ACCURACY OBTAINED FROM THE CAViAM MODEL WHEN 

TRAINED AND TESTED WITH AUDIO-VISUAL DATA OF A FAR AWAY 
AIRPLANE FLYING PAST ON ITS APPROACH TO LANDING. THE 

SOUND IS MEASURED IN A NOISY ENVIRONMENT.

Training Testing/Recall
Classifier Accuracy (mean, std)
Class 1 Class 2 Overall

audio audio 45,
31.455

  98,
0.
80

72
15.72

visual visual 50,
20 15.18

65
13.56

au
di

o-
vi

su
al visual (no audio) 56,

13.61
86,

19.57 71

audio (no visual) 90,
10.25

99,
4.47 94

audio-visual 66,
8.20

94,
9.40

80
5.12

is tested only on visual data due to a noisy environment during
the sound recordings.

B. Case Study II - Recognition of a larger and closer to the
subject moving object with the sound recorded in a noisy
environment

1) Data Acquisition and Processing: The data consists of
a 53 seconds video of a train arriving at a platform that was

downloaded from YouTube (https://www.youtube.com/watch?
v=p7o1mpwyfa0&ab channel=DutchRailwayExplorer). An 
audio-visual clip of 15 seconds (26:00 to 41:00 s) duration 
is extracted from the video clip — this will constitute the 
data with train and is referred to as Class 1. Another clip of 
15 seconds (00:00 to 15:00 s) duration is extracted that did 
not contain the train and neither approaching sound, and is 
referred to as Class 2. 

2) Feature Extraction and Model Simulation:
The segmentation of the 15 second video clips were done 
for 100 ms for both audio and visual features. Thus there 
were a total of 150 frames per class of each type. Also, the 
resolution of the visual frames here was 1080 × 1920.

The spectrograms of the audio data with and without 
train is shown in Fig 9 (top row). There is a presence of 
higher frequency components in the case of ‘with train’. The 
logarithmic power plot for each of the twelve features agree 
with the spectrogram and are shown in the Fig 9 (bottom 
row). Training and validation results are shown in Table IV. 
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Fig. 9. (Top row) Short-time-Fourier-Transform (STFT) on each 15s audio 
segment containing audio (a) with train and (b) without train, demonstrate the 
time-frequency representation of the recorded signals. (Bottom row) Twelve 
features extracted from each of the 250 ms audio segment obtained from 
the 15 second video clip (a) with train and (b) without train. The y-axis is 
logarithmic scale for easy visualisation. Similar to that for case study 1,  
the overall power is increased during the presence of the train, in 
addition to a wider frequency band occupancy.

TABLE IV
MODEL ACCURACY OBTAINED by the AViAM-SNN SIMULATOR WHEN TRAINED 

AND TESTED WITH AUDIO-VISUAL DATA OF AN APPROACHING TRAIN.

Training Testing Classifier Accuracy (mean, std)
Class 1 Class 2 Overall

audio audio 85.38,
8.24

99,
0

92
4.12

visual visual 80.38,
9.49

98.84,
2.81

89.61,
5.59

au
di

o-
vi

su
al visual (no audio)

40
13.86

98
0 69

audio (no visual)
99

0
89
5.73

audio-visual 89
6.35

99
0

94

94

3) Results of Case Study II: The accuracy obtained for
this dataset are presented in Table IV.  These results prove 
our Hypothesis 1 and Hypothesis 2. Interestingly, the highest 
accuracy was obtained  when a CAViAM model was trained 
on both audio and visual data and afterwards recalled only on 
audio data. 

C. Feature Interaction in the A-, V-, and  the AV  Data
To further understand our observations presented in Ta-

bles III and IV, we have generated directed graphs that indicate 
the level of spike interactions between the input features 
during the unsupervised training process in the 3D SNN. 
We can interpret these interactions in a brain-inspired way 
due to the SNN structure being based on a brain template 
and the AV input variables being mapped into this structure 
accordingly. 

Fig. 10. Directed Feature Interaction Graph recorded on the 3D SNN 
during training of an CAViAM model with (a) audio, (b) visual and 
(c) audio-visual modalities for the airplane dataset in our case study I.

 The interpretation given below suggests that the proposed 
AViAM framework can be used for cognitive studies in the 
future.

Figure 10 shows the directed feature interaction graphs  
for our case study I. The strongest interaction when trained 
with just the audio dataset in Fig. 10 (a) is shown to be 
between features/neurons a10 and a12, that is identified from 
Table I as the superior temporal gyrus (gray matter) and the 
sub-gyral (white matter) in the temporal lobe of the left 
cerebrum. In Fig. 10 (b), the strongest interaction when trained 
with just the visual modality are two bidirectional links 
between (v14, v16) and (v3, v16) with connection strengths 6 
and 5 respectively; from Table II, we identify the former to 
be between the lingual gyrus white matter of the right 
cerebrum at different co-ordinates, and the latter to be between 
the middle occipital gyrus and the lingual gyrus white matters 
of the left and right cerebrums respectively. When trained with 
both audio-visual modality, the strongest bidirectionally linked 
pair of nodes is (a12, v13) with connection strength 7 and 
representing the sub-gyral white matter of the temporal lobe 
and the cuneus of the occipital lobe, both in the left cerebrum.

Overall for case study I, we note that the audio node a10 
corresponding to the temporal lobe of the left cerebrum is 
identified as an important input feature when training with both
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Fig. 11. Directed Feature Interaction Graph recorded from the 3D 
SNN of a CAViAM  simulator during training with (a) audio, 
(b) visual and (c) audio-visual modalities for the train dataset in our case 
study II. 
audio and audio-visual modalites. For the visual input features, 
the node v13 in the left cerebrum seems important in forming 
a multimodal audio-visual representation. During independent 
training with visual modality though, the node v16 in the right 
cerebrum is identified as a strong input feature.

The dynamic feature interaction graph  for our case study 
II on the train dataset is shown in Fig. 11. The nodal pairs 
with strongest connectivity when trained with audio-visual 
modality (Fig. 11 (c)) is (a9, v15) that correspond to the 
sub-gyral white matter of the left cerebrum temporal lobe, 
and the cuneus of the right cerebrum occipital lobe. Note that 
this is aligned with our observation for case I, where the nodal 
pairs were the sub-gyral white matter and the cuneus, albeit 
in different cerebral hemispheres and co-ordinates.

During training with the audio modality shown in Fig. 11 
(a), the (a6, a12) nodes shows the strongest 
bidirectional connection representing (Table I) sub-gyral 
white matters of the left cerebrum temporal lobe at 
different co-ordinates. In Fig. 11 (b), the (v6, v16) pair has 
the strongest bidirectional connectivity representing (Table IV-
A5) middle occipital gyrus 
and lingual gyrus white matters of the left and right cerebrum. 

Overall, for both case studies, the nodes a12 and

v16 corresponding to the sub-gyral and lingual gyral white 
matters in the left and right cerebrum respectively. The middle 
occipital gyrus and cuneus in the occipital lobe are also 
identified a s  i mportant i nput f eature nodes.

Our work demonstrates the potential of making our learning 
system explainable by identifying potential connectivity 
pathways during audio-visual perception when more precise 
brain data and experimental settings are used. That said, 
this is only a preliminary experimentation along these lines. 
Future work will look into more brain-related selection of 
16-of-101 and 12-of-209 (or many more) features to identify
the combination that is closest to biological explainability.
Besides, and as mentioned before, we plan to work on a larger
dataset to verify the consistency of our results.

V. IMPLEMENTING THE AVIAM-SNN ON NEUROMORPHIC
PLATFORMS

The proposed CAViAM is suitable for a realization on
neuromorphic chips and platforms. One scenario is de-
scribed here. Streaming visual data will be via a software 
module or a hardware module, such as Dynamic Vision 
Sensor (DVS) [8]. The principle is to convert a dynamic and 
continuous environmental video data to spatio-temporal spike 
patterns on a ‘need-based’ manner, i.e. only a movement in 
the scene is recorded. This is unlike conventional cameras 
where each frame stores the same details regardless of change, 
thus introducing redundancy in stored data, and consuming 
needless resources, time and energy. In terms of sound, 
the streaming audio data will be encoded into spike trains 
via a software simulated cochlea method (for example, see 
https://www.phon.ucl.ac.uk/resource/cochsim/) or a hardware 
device. In the latter case there are several groups producing 
such devices , such as INI/ETH/UZH in Zurich and a group in 
the University of Seville that has an FPGA implementation of 
a Spiking AUdio Sensor which is open source (http://www.t-
cober.es/pdf/).

Along with the mentioned above DVS and Cochleogram, an 
CAViAM implementation can be based on a neuromorphic 

hardware, such as SpiNNaker [10]. The hardware 
interconnection of the DVS and the SpiNNaker is possible 
in real time for high-speed real-time processing. SpiNNaker 
is a brain inspired (neuromorphic) hardware to implement 
flexible spiking neural network architectures in real time 
10-12]. The technology allows parallel and event-based
computing and is built with very low power ARM
processors. Implementation of NeuCube on SpiNNaker has 
already been made available [11] which can be used for 
future implementations of CAViAM systems. 

Other neuromorphic platforms, can also be explored for 
efficient implementation [13, 18].

VI. DISCUSSIONS AND FUTURE WORK

While on-line encoding of video and audio streaming data 
is not a novelty[30-33,39], neither is the notion of associative 
memories [24, 25, 35] or the notion of fuzzy 
inference [26, 1], the integration of audio and visual 
streaming information in a brain-inspired SNN, to make a 
spatio-temporal associative memory, is a novel approach 
in cognitive and developmental systems and  also in 
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neural networks, learning systems and AI. In this respect, the 
proposed here CAViAM is a world-first framework to be 
explored further in terms of new methods developed and their 
wide range of applications. The presented here CAViAM 
framework is a starting point. It is illustrated here on two 
small AV data sets. The mapping of the variables in to the 
SNN model, being brain-inspired, is still on a small scale, 
mainly to illustrate the potential of this approach. Several 
directions of study can be followed: new brain-inspired 
methods for associative learning (e.g.[40]); new methods for 
mapping AV data into a SNN model; using other 
modalities in one model, along with audio and visual 
(e.g. [38]). Potential applications of CAViAM include:

- Autonomous robots and unmanned vehicles;
- Video or/and audio information retrieval from large 

repositories;
- Human-machine communication systems;
- On-line robotic control systems;
- Cognitive study systems;
- Assistive aids for visually or audio- impaired;
- Security systems.
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