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Abstract— In this paper, we present a novel Liquid State 

Machine (LSM) based approach for modelling of multimodal 

longitudinal data: the Mosaic LSM. Our model harnesses the 

strengths of multiple LSMs, each designed to capture the 

temporal patterns of a specific data modality. This temporal 

information is then added to the raw data to create a 

composite representation that encompasses both the 

multimodal and the longitudinal aspects of the data. We 

demonstrate the performance of our approach on a real-world 

dataset that contains clinical, cognitive, and genetic modalities 

with the aim of predicting the Ultra-High Risk (UHR) status 

in individuals, six months in advance. Our results show that 

the Mosaic LSM outperforms traditional machine learning 

models, achieving an outstanding Matthew's Correlation 

Coefficient of 0.84 and prediction accuracy of 92.4%. Overall, 

our work highlights the potential of Mosaic LSM as a 

powerful tool for disease prognosis, and its ability to leverage 

both the multimodality and temporality of the data to improve 

performance. 

Keywords—Spiking Neural Networks, Liquid State 

Machine, Multimodal Learning, Time-Series, Ultra-High Risk, 

Prognosis 

I. INTRODUCTION 

In the biomedical domain, longitudinal multimodal 
datasets are collections of data collected over time, across 
multiple modalities such as imaging, omics, clinical, etc. 
These datasets are used to study the progression of diseases 
and conditions, and the effects of interventions, treatments, 
and lifestyle changes on health outcomes [1]. With multiple 
modalities, it is possible to gain information about the 
individual parts of a system and its emergent behaviour as a 
whole for inference or modelling related problems. 
Integration of multiple modalities provides a more 
comprehensive view of biological processes and enables the 
analysis of complex relationships between biological and 
behavioural factors. This type of data can be useful for more 
accurate diagnosis, prognosis and the development of 
personalized medicine and treatment planning [2].  

However, longitudinal multimodal datasets pose new 
difficulties as they require modelling complex temporal 
relationships between various modalities, which are not 
addressed by standard machine learning algorithms. The 
naïve approach to handling this kind of data is to simply 
concatenate the different modalities and take the average of 
the time-based effects. However, this approach leads to the 

suppression of the interaction that takes place within each 
modality, resulting in the loss of the temporal dependencies 
that are inherent to the data. To fully leverage the potential 
of longitudinal multimodal datasets, both modality fusion 
and the treatment of longitudinal data must be considered 
simultaneously.  

The objective of fusion techniques is to effectively 
utilize complementary information from multiple 
modalities. There are two main methods of fusion, early and 
late fusion [3]. Early fusion simply concatenates features 
from different modalities into a single input for a machine 
learning model, allowing the model to learn relationships 
between and within modalities, but at a lower level of 
abstraction. Late fusion, on the other hand, trains separate 
models for each modality and combines their predictions 
using combination methods such as simple averaging or 
weighted averaging. Early fusion enables learning joint 
representations, but relevant features of a modality may 
only be recognized at higher levels of abstraction. Late 
fusion excels in marginal representations but does not take 
into account cross-modality interactions [4]. For the 
treatment of the longitudinal aspect, the challenge is how to 
find marginal representation for dealing with within 
modality temporal interactions and joint representations of 
the heterogeneous modalities.  

This paper proposes a new reservoir spiking neural 
network architecture to tackle the aforementioned 
challenges. It integrates data from multiple modalities while 
accounting for their temporal dynamics through 
intermediate fusion. Reservoir spiking neural networks 
(SNNs) are well-suited for handling longitudinal data due to 
their ability to incorporate time-series information in the 
dynamic state of the reservoir [5]. The reservoir acts as a 
memory storage system that is able to preserve temporal 
dependencies, allowing it to process sequential data 
effectively. Our architecture fuses the dynamic states of 
different reservoirs representing different modalities to 
achieve longitudinal multimodal data integration. Based on 
the task at hand, this architecture can be used to perform 
early, intermediate, or late fusion of the modalities. This 
method presents a significant advantage over other artificial 
neural network-based architectures as it only trains the last 
layer which combines and performs a simultaneous readout 
of the different reservoirs representing each modality, 
resulting in faster training compared to other recurrent 
neural networks.  
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As a case study on potential biomedical applications of 
this method, we show how information from clinical, 
genetic (RNA sequencing), and cognitive modalities can be 
combined for prognosis of ultra-high-risk (UHR) status in 
patients. Previous research on UHR modelling has 
investigated techniques for single modality data analysis 
and multimodal data modelling. One study proposed a 
neuro-fuzzy method for discovering personalized predictive 
rules using vector-based gene expression data [6], while 
another introduced a method for early integration of 
cognitive and social longitudinal data based on the NeuCube 
SNN framework, which extracts spatio-temporal 
associations between variables from different modalities 
[7]. Building on these studies, this paper presents a 
multimodal LSM architecture that supports early, 
intermediate, and late integration approaches. These 
approaches leverage the strengths of each modality, 
overcoming the limitations of relying on a single source of 
information. Furthermore, this paper tests these methods on 
the data used in the aforementioned studies. 

This paper is organized as follows: In the next section, 
we provide a brief overview of related work for longitudinal 
multimodal data modelling. In Section 3, we describe the 
proposed model and its implementation details. In Section 
4, we present the results of our experiments and a detailed 
analysis of the model's performance. Finally, in Section 5, 
we conclude the paper and discuss future work.  

II. RELATED WORKS 

A. Longitudinal Data 

Longitudinal data, sometimes also known as panel data, 
refers to data collected over time from the same individuals, 
repeatedly. This can be very useful for biomedical research 
as it sheds insight into the progression of diseases and 
disorders. By treating each time point as a separate feature 
in the model, standard machine learning algorithms like 
support vector machines (SVMs) and random forests can be 
trained to predict and classify longitudinal data. However, 
these methods do not preserve sequential integrity of the 
data. A common method for accounting for time effects is 
the linear mixed-effects (LMEs) model. These models are 
commonly used to account for the within-subject correlation 
that is inherent in longitudinal data. [8], [9] However, strong 
assumptions about the distribution of the residual errors, 
such as normality, homoscedasticity, and independence 
limit the wide adoption of LMEs.  

To overcome these limitations and capture both linear 
and non-linear patterns in the data, Recurrent neural 
networks (RNNs) are state-of-art methods, well-suited for 
modelling sequential time series data. RNNs have been 
adapted into various architectures like the LSTM and GRU 
which have been further tuned for modelling biomedical 
datasets [10]–[12]. Liquid state machine (LSM) is another 
method that can naturally handle sequential data. The LSM 
is a dynamic reservoir of interconnected spiking neurons. 
By learning the connections between the reservoir and the 
output layer, the LSM can learn to predict with temporal 
patterns in the data [13]. 

B. Multimodal Data 

Methods for multimodal data modelling can largely be 
categorised into early fusion, intermediate fusion, and late 
fusion. Early fusion has been used for integration of gene 

expression and DNA methylation data for prediction of 
Alzheimer’s disease [14], for cancer prognosis by 
combining multi-omics and clinical features [15] and for 
cancer survival analysis with multi-omics data [16]. These 
works performed early fusion via concatenation and feature 
selection and the combined features were used as input to 
deep learning models. Other approaches like auto encoders 
for learning a lower dimensional joint latent representation 
have also been employed [17], [18]. 

Intermediate fusion is when the modalities are gradually 
fused to learn marginal representations to capture within 
modality relations prior to learning joint representations or 
making predictions directly. This type of fusion has also 
been applied in biomedical literature for integrating mRNA, 
miRNA and methylation datasets to predict cancer survival 
subgroups [19]. It has also been applied to integrate multi-
omics data for breast cancer survival prediction [20]. In 
these approaches, marginal representations of each modality 
were constructed via autoencoders, and the latent features 
were later concatenated to learn the joint representations.  

Late fusion has shown effectiveness when integrating 

heterogeneous modalities such as imaging, medical 

records, and tabular data. A case study on pulmonary 

embolism showed that late fusion to integrate CT imaging 

and electronic health records resulted in better prediction 

accuracy compared to early and intermediate fusion [21]. 

However, a drawback of late fusion is its inability to learn 

joint interactions between features from different 

modalities. 

C. Mix of Longitudinal and Multimodal Data 

The fusion of multimodal longitudinal data is a 
challenging task, but recent advances in deep learning 
techniques have shown great potential in addressing this 
issue. RNNs, LSTMs, and CNNs have been successfully 
combined in fusion techniques to handle multimodal 
sequential data. For example, multimodal retinal images 
from longitudinal clinical studies have been accurately 
analysed to detect structural changes in large-scale datasets 
[22]. In Alzheimer's disease, the integration of MRI, PET 
images, cognitive scores, neuropathology, and assessment 
data has led to improved classification of patients from 
healthy controls [23]. Additionally, LSTMs and CNNs have 
been used to predict ICU interventions using data from 
multiple modalities such as vitals, labs, notes and 
demographics [24]. Recently, SNNs have shown promise in 
short-term emotion recognition using EEG and facial 
landmarks [25], and in enhancing EEG classification by 
leveraging MRI data to design the architecture [26]. 
Another study used a deep learning architecture paired with 
a linear model to learn task-specific feature representations 
and predict the progression of Alzheimer's disease using 
longitudinal multimodal neuroimaging datasets [27]. These 
results demonstrate the potential of deep learning 
techniques, including SNNs, in multimodal temporal data 
modelling. 

III. METHODOLOGY 

This section provides a description of the methodologies 
and techniques employed in this study. It delves into the 
intricacies of Liquid State Machines (LSMs), its proposed 
derivative for multimodal learning - the Mosaic LSM, and 
the experimental setup including software implementation. 



The dataset and the pre-processing procedures used for the 
experiments are meticulously documented. 

A. Liquid State Machines 

A Liquid State Machine (LSM) is a spiking neural 
network architecture based on the reservoir computing 
paradigm [28]. It consists of a large number of 
interconnected spiking neurons also known as nodes. Each 
node receives a time-varying input from external sources as 
well as other nodes. The nodes are connected to each other 
at random and the connection weights are kept fixed during 
computation. This forms a dynamical system known as the 
reservoir, which transforms the input into a spatio-temporal 
pattern of activations in the network. These activations are 
passed through a linear readout layer to produce the output 
of the system. This readout layer associates the state 
(activation) of the reservoir, in response to a given input, 
with the expected output. 

Processing the input through the reservoir network 
results in the application of a vast collection of nonlinear 
functions. Theoretically, a linear combination (using the 
readout units) of many such non-linear functions can be 
used to accomplish any mathematical operation, even 
complex tasks such as speech recognition or affect 
recognition. The word ‘liquid’ in liquid state machine 
comes from the analogy of ripples (spatio-temporal 
patterns) generated in the reservoir when a stone (input) is 
dropped into it. 

B. Mosaic LSM 

Our data is of the form 𝐷 = {(𝑋1
1. . 𝑋1

𝑚, 𝑦1),
… (𝑋𝑛

1. . 𝑋𝑛
𝑚, 𝑦𝑛)}, where 𝑋𝑛

1. . 𝑋𝑛
𝑚 represents 𝑛𝑡ℎ sample for 

the 𝑚𝑡ℎ  data modality and 𝑦𝑛  denotes the corresponding 

class label. Each 𝑋𝑛
𝑚 ∈ 𝑅𝑡×𝑑  represents a sequence of 𝑡 

time points 𝑋𝑛
𝑚 = {𝑥1 … 𝑥𝑡}. The objective is to learn the 

mapping 𝑓 ∶ X → Y , using the proposed mosaic LSM, 
which is composed of the components listed below. 

In early fusion, all the modalities 𝑋1 … 𝑋𝑚  are 
concatenated to form a single dataset, which is then 
transformed into spike-encoded data. This combined dataset 
is passed through the reservoir, allowing the model to 
process all the modalities simultaneously. In contrast, for 
intermediate and late fusion, each modality has a separate 
reservoir to capture marginal temporal dependencies within 
the modality. The sparsely connected reservoir of spiking 
neurons projects the spike encoded data into a higher 
dimensional space. Depending upon the type of fusion 
(intermediate, or late), different strategies are employed to 
integrate the information from multiple reservoirs 
(representing each modality) before mapping it to the 
desired output (illustrated in Fig. 1). 

1) Spike Encoder: To use LSMs for modeling, the 

continuous data needs to be transformed into discrete 

spikes, as LSMs work on event-based processing, similar 

to the action potentials of neurons in the brain. There are 

various methods to achieve this including, Bens Spiker 

Algorithm (BSA) and Moving window spike encoding 

algorithm etc. [29] Here, we have utilized the step forward 

algorithm [30] which produces a positive spike when the 

input feature value at time t exceeds the baseline B (input 

value at t=0) plus a threshold th. In this case, B is also 

updated as B+th. If the input feature value at time t is less 

than B+th, then a negative spike is produced and B is 

updated as B-th. This process is performed on all features 

in each modality of every sample. 

 

2) Input Layer: The input layer is sparsely connected 

to the reservoir neurons based on random numbers drawn 

from the uniform distribution. Formally, the connections 

are defined by the 𝑑 × 𝑁 matrix 𝑊𝑖 which is drawn from 

𝑢𝑛𝑖𝑓(𝑎, 𝑏). Each modality 𝑋𝑛
1 … 𝑋𝑛

𝑚  has a separate input 

layer defined by this procedure. 

 

3) Liquid Layer (Reservoir): The liquid layer is a 

reservoir composed of sparsely interconnected spiking 

neurons. The connections within the reservoir are 

established based on topological constraints informed by 

the small world assumption [31], meaning that neurons 

closer together have a greater probability of being 

connected than those farther apart. For example, the 

connection weight between neuron 𝑎  and neuron 𝑏  is 

defined by: 

𝑃𝑎,𝑏 = {𝐶 ⋅ 𝑒(𝑑𝑎,𝑏/𝜆)
2

 
0

𝑖𝑓 𝑑𝑎,𝑏 ≤ 𝑑𝑡ℎ𝑟𝑒𝑠ℎ

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

 

Where 𝑑𝑎,𝑏  is the Euclidian distance between pair of 

neurons 𝑎  and 𝑏  and 𝑑𝑡ℎ𝑟𝑒𝑠ℎ  is the distance threshold. 
𝐶 defines the maximum connection probability and 𝜆 
defines the small world connectivity radius. These 
parameters can be specified to control the level of sparsity 
in the reservoir. For the Mosaic LSM, the synaptic 
connections weights for all neurons in the reservoir are 
stored in a 𝑁 × 𝑁  matrix 𝑊𝑗  which are formed based on 

equation (1). Liquid neurons were either excitatory or 
inhibitory based on 80/20 ratio. Connections from an 
inhibitory neuron had negative synaptic weights which help 
regulate the spiking activity in the reservoir. 

We used the leaky integrate and fire (LIF) neuron for 
modelling the network dynamics. The LIF neuron is a 
simplified mathematical model of the biological neuron 
[32], widely used in implementations of spiking neural 
networks. The neuron fires when its membrane potential, 
which accumulates over time as a result of incoming spikes, 
reaches a certain threshold value. After firing, the 
membrane potential is reset to a resting value and the neuron 
becomes temporarily refractory, meaning it cannot fire 
again for a short period of time. The ‘leaky’ term in the 
model refers to the gradual exponential decay of the 
membrane potential over time. This behaviour is described 
(2-4):  

𝜇[𝑡] = 𝜇[𝑡 − 1]𝑒
−1
𝜏 (1 − 𝜃𝑗[𝑡]) + 𝐼[𝑡] (2) 

 

Here, 𝜇[𝑡]  describes (and updates) the membrane 
potential of a neuron at time 𝑡, 𝜏 is the membrane’s time 
constant, 𝜃𝑗 represents the occurrence of a spike in the 𝑗𝑡ℎ 

neuron of the reservoir at time 𝑡 . (1 − 𝜃𝑗)  is the reset 

mechanism embedded into update equation. In case of a 
spike, represented by 1, the membrane potential is reset to 
its resting value which is 0. 𝐼[𝑡] represents the current being 
injected into the neuron defined by (3). 

 



 

 
 

Fig. 1: The Mosaic LSM architecture for multimodal learning (A) using early fusion strategy. (B) using intermediate fusion strategy. 

(C) using late fusion strategy. 

 



𝐼[𝑡] = ∑ 𝑊𝑖𝜃𝑖[𝑡]
𝑑

𝑖=1
+ ∑ 𝑊𝑗𝜃𝑗[𝑡]

𝑁

𝑗=1
 

(3) 

𝜃𝑗[𝑡] =  {
1    𝜇𝑗[𝑡 − 1] ≥ 𝜇𝑡ℎ

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        
 

 

(4) 

The current 𝐼[𝑡] into a neuron at time 𝑡 defined by (3) is 
computed by taking the weighted sum of incoming spikes 
from the input layer plus the weighted sum of incoming 
spikes from neighbouring neurons in the reservoir. Whether 
a neuron spikes or not is regulated by (4), neuron 𝑗 produces 
a spike (indicated by 1) at time 𝑡, if its membrane potential 
reaches a predefined threshold 𝜇𝑡ℎ. Each modality is passed 
through separate reservoirs (reservoirs for each modality 
can have different hyperparameters i.e., thresholds and 
constants.) 

4) Concatenation Layer (for intermediate fusion): If 

the objective is to learn both the joint and marginal 

representations of the modalities, it is more suitable to  

perform intermediate fusion. This involves stacking the 

features and representations from each modality into a 

single high-dimensional vector, which is then fed as input 

to the subsequent readout layer. 

 

5) Readout Layer: The readout layer acts as an 

interface between the highly nonlinear dynamics of the 

reservoirs and the final outputs of the system.  For 

intermediate fusion, the number of times each neuron 

spiked for each modality  and the original data is passed to 

Gradient Boosted Decision Trees (GBDT) for a single 

combined readout and classification. For late fusion, 

separate readouts for each modality are used to obtain 

separate classification probabilities for each modality.  

 

6) Combined Probability (for late fusion): In the case 

of late fusion, the probabilites obtained from the separate 

readouts for each modality is combined by taking a 

weighted average. This results in marginal representations, 

as representations are learned independently for each 

modality, without considering the ‘inter-modality’ 

relationships. This can be useful and result in higher 

performance if the relationships between modalities are 

‘weak’ or ‘insignificant’.  

 

C. Dataset and Data Preparation 

The LYRIKS dataset [33] was used in this study to 
assess the capabilities of the Mosaic LSM approach. The 
dataset contains clinical, cognitive, and genetic data 
collected from Ultra-High Risk (UHR) and control groups 
over a period of two years. The clinical assessments in the 
dataset included the Clinical Assessment Interview for At-
Risk Mental States (CAARMS), the Positive and Negative 
Syndrome Scale (PANSS), and the Calgary Depression 
Scale for Schizophrenia (CDSS) and were conducted every 
6 months while the gene expression was recorded at an 
interval of 12 months and sequenced using RNASeq. 
Cognitive tests included Brief Assessment of Cognition in 
Schizophrenia (BACS), Continuous Performance Test 
(CPT), Snakes in Grass, and Perceptual Closure (PerClose) 
and were also conducted every 6 months. 

To ensure the comparability amongst the data 
modalities, all of them were normalized using min-max 
scaling. The objective set forth in this study was predicting 
6 months in advance, whether an  individual will be UHR 
for psychosis or not. The data from 0-18 months was used 
to predict the UHR status at 24 months. Of the total 
participants in the LYRIKS dataset, 66 individuals had data 
for all three modalities, at all the timesteps, with minimal 
missing values. Out of these 66 participants, 40 were 
classified as no-risk at 24 months, including 20 healthy 
individuals and 20 individuals who were previously UHR 
but remitted. The remaining 26 participants were classified 
as at-risk, including 6 individuals who developed full-blown 
psychosis. 

The missing values were imputed using temporal 
interpolation i.e., using the available previous or next 
timesteps. The step-forward encoding was used to translate 
the longitudinal data into spike trains for the Liquid State 
Machine (LSM) reservoir, with the 0-18 months data being 
interpolated into 52 timesteps to ensure sufficient spiking 
activity in the reservoir. 

D. Experimental Setup 

The Mosaic LSM was implemented in Python and the 
snnTorch library was used to handle the spike trains. The 
experiments were carried out on Google Colab, a cloud-
based computing resource for jupyter notebooks. GPU 
acceleration was used for faster and more efficient 
computations. Since the number of samples in the data was 
less, 5-fold cross validation was used to obtain a robust 
measure of model performance. To ensure a fair 
comparison, the same 5 folds were used for all the models. 
The hyperparameters of LSM reservoir were tuned within 
each fold, on the training set, using grid search. For the 
genetic modality, feature selection was performed within 
each fold, to select the top 10 genes relevant to UHR 
prognosis. 

The Mosaic LSM model was compared with four other 
popular and well-established machine learning models for 
time-series analysis, namely Gradient Boosted Decision 
Trees (GBDT), Support Vector Machines (SVM), Long 
Short-Term Memory (LSTM), and simple Liquid State 
Machine (LSM). The GBDT implementation was taken 
from the XGBoost library, the SVM from scikit-learn, and 
LSTM from TensorFlow Keras. The LSTM model 
architecture consisted of two LSTM layers of size 32, two 
dense layers of size 64 and 32, and a final SoftMax layer. 
The adam optimizer was employed to tune the weights with 
the learning rate set to 5×10-4. The performance of these 
models was assessed using three metrics: accuracy, 
Matthew’s correlation coefficient (MCC), and confusion 
matrix. 

IV. RESULTS 

In this section, we present the results of our study on the 
prognosis of Ultra-High Risk (UHR) for psychosis, 
including an ablation analysis where we evaluated the 
efficacy of each modality separately. We first report the 
results of prognosis using single modalities, clinical, 
cognitive, and genetic. The objective here is to understand 
the performance of each modality by itself. Next, we present 
the results of multimodal integration of these modalities. 
The aim is to evaluate the performance improvement 



achieved by fusing the multiple modalities together and the 
effectiveness of our proposed Mosaic LSM architecture. 

A. Unimodal Prognosis 

Clinical assessments serve as the established method for 
diagnosis of UHR in individuals. However, they suffer from 
a few limitations such as subjective interpretation of 
answers by assessors, potential biases in answering and 
inability to capture the complete status of an individual’s 
mental health. Despite these limitations, clinical 
assessments remain the most commonly used modality for 
prognosis due to the lack of alternative modalities with 
sufficient validation. Therefore, we begin by evaluating the 
efficacy of the clinical modality first and then proceed to 
compare the efficacy of the other modalities, genetic and 
cognitive, with that of the clinical modality. The results of 
the unimodal prognosis are presented in Table 1 and 
visualised in Fig. 2. 

1) Clinical data: The results show that the Mosaic 

LSM achieves the highest accuracy 87.9% followed by 

SVM and GBDT with 86.4%. LSM achieves 84.8% while 

LSTM achieves the lowest accuracy 78.8%. The MCC, 

which accounts for true and false positives and negatives, 

also reflects a similar ranking. The optimal paramters for 

the reservoir were usually found to be the ones that allowed 

a significant amount of spiking activity and SVM was 

found to be the appropriate readout classifier. 

   

2) Genetic data: For the genetic modality, Mosaic 

LSM outperforms the other models with an accuracy of 

86.4% and MCC of 0.74. Comparatively, the basic LSM 

only achieves an accuracy of 80.3% while SVM performs 

the second best with an accuracy of 83.3%. The optimal 

parameters for the reservoir were found to be ones that 

severely constrained the spiking activity in the reservoir. 

GBDT was found to be the optimal readout classifier which 

aligns with the nature of the rna data because it contains 

counts. Overall, the genetic modality showed promising 

results, achieving accuracies close to the clinical modality 

while also being an objective measure of an individual’s 

state of health. However, it is important to note that only a 

limited number of samples were used in this study and more 

research and improvement on the genetic modality is 

needed to match the accuracy of the clinical modality for 

UHR prognosis. 

 

3) Cognitive data: The results show that Mosaic 

LSM again achieves the highest accuracy (72.7%) and 

MCC (0.42). GBDT and SVM had MCC close to zero 

indicating they failed to learn anything from the data while 

LSM and LSTM showed weak correlation of 0.35 and 0.22 

respectively. The optimal parameters for the reservoir were 

found to be close to the default parameters, where regular 

spiking was sustained and  SVM was found to be the 

optimal readout classifier. While the accuracies were lower 

using the cognitive modality, by achieving a MCC of 0.42, 

the Mosaic LSM demonstrated its potential as a 

complementary modality, which when combined with 

other modalities, can provide additional insights into the 

mental health status of individuals.   

TABLE I.  SIX-MONTH AHEAD PREDICTION OF UHR USING 

UNIMODAL PROGNOSTIC MODELS. MODEL PERFORMANCE ARE 

EVALUATED USING ACCURACY, MCC AND  CONFUSION MATRICES 

Data Model 
Performance 

Accuracy MCC 
Confusion 

Matrix 

Clinical 

XGBoost 86.4 0.71 
[36  4] 
[ 5 21] 

SVM 86.4 0.72 
[35  5] 

[ 4 22] 

LSTM 78.8 0.57 
[31  9] 

[ 5 21] 

LSM 84.8 0.69 
[34  6] 

[ 4 22] 

Mosaic LSM 87.9 0.74 
[37  3] 

[ 5 21] 

Genetic 

XGBoost 81.8 0.62 
[34  6] 
[ 6 20] 

SVM 83.3 0.66 
[33  7] 

[ 4 22] 

LSTM 78.8 0.56 
[32  8] 

[ 6 20] 

LSM 80.3 0.58 
[35  5] 

[ 8 18] 

Mosaic LSM 86.4 0.72 
[35  5] 

[ 4 22] 

Cognitive 

XGBoost 56 0 
[32  8] 
[21  5] 

SVM 53 -0.1 
[30 10] 

[21  5] 

LSTM 65.2 0.22 
[35  5] 

[18  8] 

LSM 69.7 0.35 
[32  8] 

[12 14] 

Mosaic LSM 72.7 0.42 
[33  7] 

[11 15] 

The best results are highlighted. 

B. Multimodal Prognosis 

In recent years, the healthcare industry has witnessed a 
growing trend of utilizing multiple data modalities for 
disease diagnosis and prognosis. The use of multiple 
modalities leads to a more holistic view of an individual’s 
health and has been shown to improve diagnostic and 
prognostic accuracy. Hence, in this study, we investigated 
the feasibility of combining clinical, genetic, and cognitive 
modalities for UHR prognosis. All three multimodal 
integration strategies of the Mosaic LSM – early fusion, 
intermediate fusion, and late fusion, as described in Section 
2B and shown in Fig. 1, were tested on this data.  

In the simple LSM, a separate reservoir was employed 
for each modality with a shared SVM readout classifier. For 
the remaining models, an early fusion approach was used 
where the three modalities were concatenated before 
passing on to the model. The Mosaic LSM used SVM as its 
readout classifier for early and intermediate fusion, whereas 
for late fusion, the most optimal readout classifiers were 
employed based on the results of the unimodal analysis. For 
the clinical and cognitive modalities, SVM was utilized, 
while GBDT was utilized for the genetic modality. The class 
probabilities of the three readout classifiers were combined 
using the ratio of 1:0.25:0.1 for the clinical, genetic, and 
cognitive modalities, respectively. The results of the 
experiment are presented in Table 2 and Fig.2. 

The performance of the models varied when tested on 
the multimodal data. Most models showed marked 
improvement in accuracy and MCC, with GBDT being the 
only exception. The LSTM model showed marginal 
improvements in accuracy, however, still had the lowest 



accuracy among all the models. The Mosaic LSM 
outperformed all models, achieving a remarkable 92.4% 
accuracy and 0.84 MCC with the late fusion strategy. The 
SVM model followed closely behind, achieving 89.4% 
accuracy and 0.78 MCC. Even the simple LSM showed a 
notable improvement with 87.9% accuracy and 0.74 MCC. 

The superior performance of the late fusion version of 
Mosaic LSM on this heterogeneous UHR dataset can be 
attributed to the adaptive weighting of modalities. 
Intermediate fusion tends to assign equal importance to all 
modalities, which can negatively impact the model's 
performance when some modalities underperform. In 
contrast, early fusion merges the modalities at the beginning 
of the learning process, potentially leading to the loss of 
modality-specific temporal information. Late fusion, by 
assigning more weight to well-performing modalities, 
achieves superior accuracy. The results obtained from the 
Mosaic LSM demonstrate its potential to learn from 
multiple sources of information. The LSM in Mosaic LSM 
adeptly captures temporal patterns in the data, which when 
combined with the raw values, provides more information 
to the readout classifier, and improves accuracy. Notably, 
both intermediate and late integration strategies of Mosaic 

TABLE II.  SIX-MONTH AHEAD PREDICTION OF UHR USING 

MULTIMODAL PROGNOSTIC MODELS. MODEL PERFORMANCE ARE 

EVALUATED USING ACCURACY, MCC AND  CONFUSION MATRICES 

Data Model 
Performance 

Accuracy MCC 
Confusion 

Matrix 

Clinical  
+  

Genetic  

+  
Cognitive 

XGBoost 83.3 0.67 
[32  8] 

[ 3 23] 

SVM 89.4 0.78 
[37  3] 

[ 4 22] 

LSTM 81.8 0.62 
[34  6] 

[ 6 20] 

LSM 87.9 0.74 
[37  3] 
[ 5 21] 

MosaicLSM-EF 87.9 0.75 
[38 2]  

[ 6 20] 

MosaicLSM-IF 90.9 0.81 
[36  4] 

[ 2 24] 

MosaicLSM-LF 92.4 0.84 
[37  3] 

[ 2 24] 

The best results are highlighted. 

LSM achieved an MCC exceeding 0.8, which is highly 

significant for early-stage disease prognosis. 

V. CONCLUSION 

This paper presents a novel and promising approach for 
multimodal learning from longitudinal data. The field of AI 
has seen a surge in the use of multimodal data for various 
tasks such as natural language understanding, human 
activity recognition, sentiment analysis, speech recognition, 
and disease diagnosis and prognosis. Despite the existence 
of many methods for multimodal data analysis, there is a 
lack of approaches that can effectively model temporal data, 
especially in smaller datasets.  

The proposed Mosaic LSM architecture addresses the 
challenges of modelling complex temporal relationships 
between various modalities by incorporating time-series 
information in the dynamic state of the reservoir. This 
information is then combined with the raw dataset to create 
a joint representation (early and intermediate fusion) or 
marginal representations (late fusion), depending on the 
chosen approach, prior to being fed into the readout 
classifier. By exploiting the strengths of each modality, this 
approach overcomes the limitations of relying on a single 
source of information. The results of the study on the 
LYRIKS dataset demonstrate that the Mosaic LSM 
outperforms traditional models such as Support Vector 
Machines (SVM), Gradient Boosting Decision Trees 
(GBDT), and Long Short-Term Memory Networks (LSTM) 
for UHR prognosis, with a significant MCC, greater than 
0.8. 

This work has significant implications for the future of 
healthcare and personalized medicine, particularly in the 
integration of multimodal longitudinal data, such as EEG 
and fMRI. The Mosaic LSM has the potential to provide a 
more accurate diagnosis, prognosis, and treatment planning 
by leveraging multiple modalities and accounting for their 
temporal dynamics. However, as with other artificial neural 
networks, the initial weights of the connections can greatly 
impact the results, particularly in smaller datasets. Further 
research is needed to develop a more robust approach for 
initializing the connectivity in LSMs. To enhance the 
interpretability of the reservoir, future work will draw 

 
 

Figure 2: Comparison of MCC achieved by various classifiers using the different data modalities for UHR prognosis. 

 



inspiration from NeuCube. Overall, our study represents an 
important step forward in the application of spiking neural 
networks for multimodal learning and analysis of 
longitudinal data. 
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