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Abstract

This paper offers for the first time a novel method for creating Predictive Associative Memories of Time series (PAMeT), where

a full set of time series variables is used to create a machine learning predictive model (global learning), and afterward, only

a few temporal variables are used at a shorter time to recall the model on new data (local recall). Inspired by human brain

processes, PAMeT-SNN leverages the brain-inspired SNN NeuCube and the concept of spatio-temporal associative memories

(STAM). PAMeT-SNN is a 4-dimensional spatio-temporal structure. First, it encodes time series data into spike sequences that

reflects on the changes in the data over time and then maps the temporal variables into the SNN using temporal similarity to

define the spatial locations of the variables in the SNN. It then learns temporal associations between a full set of time series

variables, thereby memorizing these temporal associations as spatio-temporal connections between neurons. These connections

are activated when only part of the time series data is used to recall the model on new data. The proposed groundbreaking

method is exemplified with PAMeT-SNN for predictive modeling on two distinct case study time series data sets: trade dynamics

and commodity prices. In these case studies, the method effectively captures the intricate data dynamics, enabling accurate

forecasting of future values using a minimal set of variables. The method has the potential to be applied in diverse domains.
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Abstract—This paper offers for the first time a novel method 

for creating Predictive Associative Memories of Time series 

(PAMeT), where a full set of time series variables is used to 

create a machine learning predictive model (global learning), and 

afterward, only a few temporal variables are used at a shorter 

time to recall the model on new data (local recall). Inspired by 

human brain processes, PAMeT-SNN leverages the brain-

inspired SNN NeuCube and the concept of spatio-temporal 

associative memories (STAM). PAMeT-SNN is a 4-dimensional 

spatio-temporal structure. First, it encodes time series data into 

spike sequences that reflects on the changes in the data over time 

and then maps the temporal variables into the SNN using 

temporal similarity to define the spatial locations of the variables 

in the SNN. It then learns temporal associations between a full set 

of time series variables, thereby memorizing these temporal 

associations as spatio-temporal connections between neurons. 

These connections are activated when only part of the time series 

data is used to recall the model on new data. The proposed 

groundbreaking method is exemplified with PAMeT-SNN for 

predictive modeling on two distinct case study time series data 

sets: trade dynamics and commodity prices. In these case studies, 

the method effectively captures the intricate data dynamics, 

enabling accurate forecasting of future values using a minimal set 

of variables. The method has the potential to be applied in 

diverse domains.  

Impact Statement —As time series data are widely used in 

economics, finance, health, engineering, and environment, the 

proposed method offers a new trend in AI, where a PAMeT-SNN 

model is created globally on a large number of variables/data and 

recalled and updated locally on smaller subsets of variables/data.  
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I. INTRODUCTION 

n today's globalized world, predictive modeling of time 

series data, such as economic, environmental, etc. is 

crucial for world prosperity. Many of the time series data are 

of multiple variables that interact with each other over time. 

The challenge is how to use a large scale of available data to 

create a machine learning model that can be recalled at 

different times with a smaller number of available variables 

measured at shorter times, still achieving good predictive 

accuracy. 

The paper proposes for the first time a predictive associative 

memory for time series based on spiking neural networks 

(PAMeT-SNN). The model utilizes the concept of spatio-

temporal associative memory [7]. The proposed PAMeT-SNN 

addresses some of the limitations of conventional neural 

network methods to handle non-linear and volatile time series 

data, and offers a novel comprehensive approach to predict  

time series with reduced input features without compromising 

prediction accuracy and explainability, thus contributing to the 

advancement of explainable AI and incremental learning 

systems. The case studies in economic forecasting also 

constitute an unique contribution. 

Associative memory (AM) is defined as the ability to learn 

and remember relationships between items and to recall these 

associations using partial information. Several AM for time 

series have been developed using statistical methods [35-38].  

Although associative memory is a fundamental concept in 

brain information processing, the mechanisms underpinning it 

are still unknown [10]. The human brain learns incrementally 

from a lot of information and performs spatio-temporal 

associations between unrelated patterns to robustly store this 

knowledge in space and time [39,40,41].  

This structured knowledge between events and their spatio-

temporal attributes is retrieved to make future decisions, when 

only part of the information is available, either due to limited 
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sources, limited time to make the decision, or both. 

Resembling the human brain is one of the most important 

goals in computational intelligence. AM models based on 

neural networks have been already proposed in the literature. 

The Hopfield network [2] and the bi-directional AM [42] are 

recurrent neural networks that can be used for pattern 

recognition. However, they deal with vector-based data and 

not with spatio-temporal or temporal data. 

A Hetero-Associative Memory Network (HAM) to model 

AM using spiking neural networks proved its effectiveness in 

learning and recalling associations between input and output 

patterns using simulations [3]. An auto-associative memory 

based on a spiking neural network (SNN) uses FPGA 

architectures' vast connection resources to mimic biological 

brain networks' axons [4]. SNN-based models to encode 

different memories using different subsets of encoding 

neurons with temporal codes is proposed in [5,39,41]. 

Simulation results show that synaptic modification of 

connections between input layers and hidden layers allows for 

hetero-associative memory, and recurrent connections 

between hidden layers allow for auto-associative memory. A 

network of spiking neurons with AM capability is used to 

build a dynamic pattern recognition system [6]. 

AM of spatio-temporal data [7]  allows the model to be 

trained on all temporal variables and recalled on part of them 

in both time or space.  

The paper is organized as follows: Section 2 presents the 

background knowledge of SNN, NeuCube [11] and STAM 

[7]. Section 3 introduces the proposed PAMeT-SNN 

framework, which functional diagram is shown in Fig.1. 

Section 4 presents an experimental study using the method on 

trade time series data, and section 5 applies the method on a 

second case study time series data. Section 6 is the conclusion. 

II. SPIKING NEURAL NETWORKS (SNN), THE NEUCUBE BRAIN 

INSPIRED SNN ARCHITECTURE AND STAM 

A. Spiking Neuron Models 

In SNN, information is represented and processed as 

sequences of spikes, i.e., binary events at specified times. 

SNN departs the traditional neural network learning 

algorithms by the fact that they can learn “time” in their 

connections. There are several types of spiking neurons and 

SNN introduced so far   [8]-[17]. The Leaky integrate-and-fire 

(LIF) neuron model is adopted in many SNN systems (for a 

review, see [13]). It is a simple RC-circuit with a potential 

leakage, characterized by low computational cost. The neuron 

will emit a spike when the accumulated input voltage reaches 

a threshold and then reset to a resting state. The membrane 

potential u(t) of the neuron is shown in (1). 

𝜏𝑚
𝜕𝑢

𝜕𝑡
=  𝑅. 𝐼(𝑡) −  𝑢(𝑡)      (1) 

 

where, R is resistance, I(t) membrane current, u(t) membrane 

potential, and 𝜏𝑚=𝑅. 𝐶 neuron’s membrane time constant. 

 

B. Spiking Learning Rules 

1) Spike-Timing Dependent Plasticity (STDP)  

The Spike-Timing Dependent Plasticity (STDP) learning 

rule is implemented [8] where the firing order of connected 

neurons determines the synaptic weight. If a pre-synaptic 

neuron fires first, before a post-synaptic neuron, then long-

term potentiation (LTP) is established to strengthen the 

synapse weight. However, if a post-synaptic neuron activates 

first, a long-term depression (LTD) occurs, weakening the 

connection weight. Thus, the modification of the synapse 

(increase or decrease in weights) can be defined as a function 

of the firing times of pre-synaptic and post-synaptic neurons 

based on the difference between tpre and tpost. 

STDP learning creates long-term memory by changing 

connection weights to form LTP or LTD. Once data is learned, 

the SNNcube retains the connections as long-term memory. 

Then, if just part of the new information is inputted, a chain of 

activities would fire in the SNNcube based on established 

connections [9]. Thus, the NeuCube can be explored for 

learning long spatio-temporal patterns and utilized as 

associative memory and as a predictive system for event 

prediction when only some initial new input data is presented.  

The STDP function is defined as in (2,3). 

 

∆𝜔 = {
+𝑎 . 𝑒

𝑡𝑝𝑟𝑒−𝑡𝑝𝑜𝑠𝑡

𝜏+     if tpre < tpost 

−𝑎 . 𝑒
𝑡𝑝𝑜𝑠𝑡−𝑡𝑝𝑟𝑒

𝜏−     if tpre > tpost

    (2,3) 

where ∆ω is the change in weights; a is positive constant 

learning rate; t is time. 

 

2) The rank order method (RO)  

 The rank order (RO) [10] learning rule allows for new 

connection weights are formed, depending on the order of the 

incoming spikes, and the number of spikes that follow the first 

spike, as in (4).  

𝜔𝑖,𝑗 = 𝛼. 𝑚𝑜𝑑𝑜𝑟𝑑𝑒𝑟(𝑗,𝑖) ± 𝑑      (4) 

where, 𝜔𝑖,𝑗 is the synaptic weight between a pre-synaptic 

neuron j and the post-synaptic neuron i; α is a learning 

parameter; mod is a modulation factor that update weight on 

first spike occurrence; 𝑜𝑟𝑑𝑒𝑟(𝑗, 𝑖) represents the order of the 

first spike at synapse j and it is zero for the first spike to 

neuron i then increases according to the input spike order at 

other synapses; 𝑑 is the drift parameter that updates the 

connection weight on subsequent spikes. 

C. The NeuCube SNN Architecture   

The NeuCube architectural paradigm is inspired by the 

human brain and its ability to form AM [11]. It consists of: 

spike encoding module; 3D SNNcube module; SNN 

classifier/regressor; parameter optimization module. NeuCube  

learns from data and connects clusters of neurons to capture 

the  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

3 

 

 Fig. 1. The proposed PAMeT-SNN framework, consisting of: spike encoding module; 3D SNNcube; regression module, inspired by NeuCube [11] and tailored 

for the first case study trading data. The upper scheme is the training part of a full model and the lower is its recalling on smaller data set . 

 

complex temporal relationships between input features of the  

time series data and to provide a more interpretable 

representation of the underlying dynamics of the time series in 

order to make a prediction when new input data is presented. 

The NeuCube functioning includes the following 

algorithms: 
 
                                  

1) Spike encoding of input signals  

In the threshold-based encoding algorithm, excitatory 

(positive) and inhibitory (negative) spikes are generated based 

on substantial changes in the signal intensity over a certain 

threshold that is calculated. Encoded spikes are formulated 

only if variation in consecutive input values is different from 

the threshold (TH), which are then used as inputs to the 

spatially located neurons from the SNNcube module [13]. 
 

2) Model Initialization 

The generated spikes are mapped to a predefined number of 

neurons located in the 3D-SNNcube. The connections between 

the neurons are initialized using the small-world connectivity 

(SWC) approach. For time series where there is no spatial 

information available for the input variables, a vector 

quantization principle is employed, in which similar temporal 

input variables are mapped to closer spiking neurons in the 

SNNCube [9]. 

3) Unsupervised Learning Phase [13]  

Using the STDP learning rule, a SNNcube  is trained on the 

encoded samples. Some hyper-parameters should be defined, 

such as the neuron’s potential leak rate, the neuron’s 

refractory time after emitting the spike, the STDP learning rate 

for updating the connection’s weights, the firing threshold for 

the neuron to generate a spike, the number of training 

iterations, and the long-distance probability. 

4) Supervised Learning Phase 

The computationally efficient dynamic evolving Spike 

Neural network (deSNN) is trained as an output 

classifier/regressor using labeled information associated with 

input samples [11]. 

When a new input vector is encoded as input spikes during 

the recall phase, the spiking pattern is transmitted to all newly 

generated neurons during the learning phase in the SNNcube. 

If an output neuron's membrane potential exceeds its 

threshold, neuron i generates an output spike at time t. 

5)  NeuCube parameter optimization  

For better performance during the learning process of a 

NeuCube model, several parameters need to be optimized 

using the prediction accuracy as an objective function [13]. 

D. Spatio-temporal associative memories (STAM) 

The idea of using NeuCube for STAM was first introduced 

in [11]. In [7] some principles, definitions, and evaluation 

criteria of STAM are presented. 

STAM is a system that is trained for classification or 

prediction on all available spatio-temporal data and their 

variables and recalled only on part of these variables and/or 

part of their temporal length. Two validation criteria are 

introduced for STAM in [7]: 

- association accuracy, measuring how well a STAM system 

trained on all spatio-temporal data can be recalled of 

smaller part of the same data;  

- generalization accuracy, where the above test is applied on 

a new spatio-temporal data.  

In the next section we present the proposed PAMeT-SNN 

method and framework.  

III. THE PROPOSED PAMET-SNN METHOD 

The functional framework of PAMeT-SNN is presented in 

Fig.1. In this section we present the method and also illustrate 

it on the first case study  data, which is fully investigated in 

section III.   

The first case study data [23] is a time series trading data set 

that represents India's major trading partners, including China, 

Australia, Germany, Iraq, Saudi Arabia, United Arab 

Emirates, United States, and other countries as Rest of World 
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(ROW). In this model, the share of monthly imports as a 

proportion of total imports is used instead of the values of 

imports. The output variable in this case represents the next 

month share of Chinese imports to India. 

As explained in section II, learning in the SNNcube is 

spatio-temporal, i.e., time series data is first spatially mapped 

into the structure of the SNNcube and then the local learning 

rule STDP is applied to the encoded into spike sequences data 

which changes the connectivity between neurons inside the 

SNNcube in space and time. To map time series data spatially 

into a 3D SNN model, first existing time series are analyzed in 

terms of their similarity, before and after spike encoding. 

Using the graph matching algorithm proposed in [9], similar 

variables are mapped to closer spiking neurons in a 3D SNN 

model (Fig. 2a).  

Based on the spatial mapping of temporal variables and the 

unique feature of NeuCube for spatio-temporal learning, the 

main hypotheses addressed in the paper is: Once a PAMeT-

SNN model is trained on a full scale of time series variables 

for prediction, it can generalize to partial time series variables, 

both in terms of number of variables used and their time 

length. 

The rationale behind the hypothesis is the following. The 

SNNcube accommodates the time series similarity information 

first as spatial coordinates of the input vbariables. Then the 

SNNcube is trained on the time series data encoded into spikes 

using spike-time dependent plasticity (STDP) learning, which 

guarantees that the connection weights between the neurons 

capture temporal associations between the input variables 

(Fig. 2a).  

Once a SNNcube is trained on K time series variables, each 

measured in a time length of T, the model can be recalled on a 

smaller number of variables K1<K and time of measurement 

T1<T, as the already created connections during learning can 

be indirectly activated even when some input variables are 

missing in the recall procedure following the principles 

polychronization [15] and synfire [16]. 

And these connections can be activated even for a shorter 

time of the temporal variables, rather than for the full time 

used in the training of the full model.   

The research question now is: How to find the important 

variables K1 and their time T1 of measurement for recall of a 

fully trained model on K variables measured over time T, so 

that the prediction accuracy on the recalled time series data 

would not be affected? Can these variables be used as 

predictive markers? The complexity of the problem comes 

from the fact that here we deal with temporal variables, rather 

than with static vector-based data, and also from the fact that 

only few variables can be used for a recall of a model, trained 

on a full set. In this way some limitations of the traditional 

deep neural networks can be overcome [17]. 

The proposed PAMeT-SNN methodology consists of the 

following procedures:       

1. Defining the set of K time series variables for the 

prediction of a targeted output time series variable or a 

future event.   

2. Encoding the K time series variables into spike 

sequences. 

3. Spatially mapping the K input variables into the 

SNNcube using the graph mapping algorithm [9] (see 

Fig. 2a). 

4. Training the 3D SNNcube with the STDP unsupervised 

learning and the deSNN output regressor with supervised 

learning.  

5. Analyze the impact of the input variables in the 

SNNcube model through calculating a feature interaction 

network (FIN) as a graph of the number of spike 

exchange (information exchange) between the clusters of 

the input variables during learning [13]. The more spikes 

are exchanged between 2 variables, the more important 

they are for the predictive model. 

6. Rank the importance of variables based on the 

information from step 5.  

7. Remove lower ranked variables and recall the NeuCube 

model only on the left K1 variables, check the 

association and generalization accuracy. 

8. Recall the model on the K1 variables, measured over 

time T1 < T and calculate the association and 

generalization accuracy.  

9. Repeat step (8) for smaller time intervals until 

satisfactory accuracy.  

10. Repeat steps (7), (8) and (9) to estimate the final number 

of important variables K1 and their time of measurement 

T1 that can be used to recall a NeuCube model without 

sacrificing the regression accuracy.   

11. Evaluate the K1 variables as potential predicting markers 

according to the prediction problem in hand. 

 

When smaller number of variables K1 is entered into a fully 

trained PAMeT-SNN model for a recall (step 8), the other 

variables are zeroed, so that they are represented by no spikes, 

meaning no changes. This is a significant difference between 

the PAMEeT-SNN and traditional neural networks, that makes 

the proposed model flexible in both space (variables) and time 

(their temporal length).  When a PAMeT-SNN model, trained 

with full set of variables, is recalled on a smaller subset of 

them, the already created connections in the SNNcube are 

activated even with smaller number of inputs, if these 

connections represent strong association between the input 

variables (see Fig.8). In this respect, by zeroing an input 

variable during a recall process does not mean “ignoring” its 

impact on the output as this variable may have a strong 

connection with the output variable, learned in the full model.  

This is a biologically plausible principle [40].  
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(2a) (2b) 

Fig. 2a. Spatial mapping of 8 time series variables (country import to India from the case study data [23] ) into a SNNcube of 1,000 
neurons with the use a graph matching algorithm [7] and connectivity between neurons after unsupervised training of the SNNcube, 
where connections represent spatio-temporal interaction between input variables. Fig. 2b. represents the (x, z) projection of the SNNcube 
connectivity. Blue lines are positive connections (excitatory), while red lines are the evolved negative connections (inhibitory). 

IV. PAMET-SNN MODEL ON CASE STUDY 1 TRADE DATA 

A. Case Study on Time Series Trade Imports Data 

Dataset Description 

The trading case study data was briefly introduced in 

section III. In 2022, India has emerged as one of the world’s 

fastest-growing economies and has become a major player in 

the global economy with a high growth rate [18] [19] [20]. 

India's imports in 2020 accounted for 2.4 percent of global 

imports, with the top imports being crude petroleum, 

electronics, and machinery, imported mostly from China, the 

United Arab Emirates, and the United States [21] [22]. 
 

A PAMeT-SNN model is developed here on this case study, 

involving predictive modeling of trade data, particularly when 

limited features are presented on recall. From January 2011 to 

July 2022, 139 observations of monthly imports of goods were 

obtained from the United Nations Comtrade [23]. 

B. Dataset Pre-processing  

Using a sliding window of 12 months, one data point at a 

time, 127 overlapping samples have been generated from the 

original dataset. The 8 input features/variables are the monthly 

import to India from each of the 8 countries, while the target 

prediting feature is the next month import from China as the 

biggest importer to India. 

C. Dataset Modeling 

Conforming to the PAMeT-SNN method from section III,  

the developed here model encodes spikes using the threshold-

based representation (TBR) encoding algorithm. The TBR 

generates positive and negative spike sequences in response to 

an increase or decrease in the real value of two consecutive 

import values from the input time series (Fig.3). 

The advantage of using the PAMeT-SNN model with the 

TBR encoding algorithm is that it can deal with noisy data, 

ignoring small perturbations in it. The algorithm is suitable for 

trade data analysis as it focuses solely on identifying 

differences between successive temporal characteristics [25].  

 

In this model, the spike threshold is set at 0.5, and the 

generated spikes are initially mapped to the randomly 

connected LIF-based neurons of the NeuCube using a small 

world (SW) connectivity rule with a radius of 2.5. STDP 

learning is used in an unsupervised learning stage to capture 

spatio-temporal associations from encoded inputs. Here the 

used STDP learning rate is 0.01 and the firing threshold of the 

LIF neurons is set to 0.5. When this threshold is reached, the 

neuron emits a spike, and its membrane potential is reset to 

zero for the duration of its refractory time, which is set at 6 

units. The membrane potential leaks between spikes at a 

potential leak rate of 0.002. 

The dynamic evolving deSNN regressor is utilized in the 

supervised mode, with each output neuron associated with a 

single training sample that is connected to every other neuron 

in the SNNcube. The connections between connected neurons 

[i,j] are initialised using the Rank-Order (RO) method of the 

first incoming spike with the modulation factor (Mod) set to 

0.8. The spike-driven synaptic plasticity (SDSP) learning rule 

adjusts these connections with a drift value δ = 0.005, 

increasing their weight when spikes arrive at next time points 

and decreasing it if no spikes occur [11]. 

D. Experimental Results, Analysis, and Visualization 

The set of samples was split in half so that 50% of the data 

were used for training, and the other 50% were used for 

incremental learning and validating the model. After the 

unsupervised learning phase is completed, the connections 

between the input neurons in the trained SNNcube are 

displayed in Fig. 2a. Positive (excitatory) connections between 

neurons are shown as blue lines, and negative (inhibitory) 

connections are represented in red. Fig. 2b. represents a cross-

section projection of the 3D SNNcube offering a clear view of 

the inner connections. 

A spike raster plot in Fig. 3a is an example representing 

spiking activity of all input neurons over for one sample of 12 

months, where each dot corresponds to the occurrence of a 

spike from a particular input neuron. Fig. 3b shows the 
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amount of positive and negative spikes being emitted by each 

neuron during the learning stage. 

  

 
  

(3a) (3b) 

Fig. 3a. A spike raster plot provides a visual representation of the spiking activity across all 1000 neurons during learning of one 
sample of 12 time points, where each dot corresponds to the occurrence of a spike at a particular neuron. The horizontal axis 
represents time, while the vertical axis represents different neurons. Fig. 3b. shows the positive and negative spike amount emitted 
by each neuron. 

The learned interactions between the input neurons that 

represent the trading partners' imports are illustrated by the 

feature interaction network (FIN) graph in Fig. 4a. The 

influence of activity between trading partners is represented 

by connected straight lines. The denser the connection, the 

greater the effect between the partners. Fig.4b shows the 

average spike interaction between the clusters around the input 

variables. In this graphic representation, China-ROW corridor 

shows a strong influence between each other. 

During unsupervised STDP learning in the SNNcube, 

spikes are transmitted across synapses between neurons, 

resulting in changes to the connection weights. Fig. 5a shows 

the clusters created around each input neurons and Fig.5b 

shows the size of these clusters. The larger the size, the more 

impact this input variable has on the model.   

Once a full PAMeT-SNN model is created with the use of 

all K temporal variables and time series data available of 

length T, the model can be recalled using a smaller number of 

K1 < K variables, measured at a shorter times T1<T, which is 

demonstrated in the next sub-section. 

E. Using the PAMeT-SNN to predict future imports with a 

small number of input trade time series variables at shorter 

times 

The PAMeT-SNN model here aims to predict India's 

imports from China for the forthcoming time period using an 

incomplete dataset of independent features after a PAMeT-

SNN model is created using eight time series variables 

representing imports from Australia, China, Germany, Iraq, 

Saudi Arabia, the United Arab Emirates, the United States, 

and other countries.  

 Using a graph mapping algorithm, the K-selected time 

series variables are encoded as spike sequences and mapped 

into the 3D SNNcube (Fig.2a). Following unsupervised 

learning with STDP and supervised learning to train the 

deSNN, the proposed algorithm learned and memorized all 

time series samples for training and relationships between the 

8 variables in the model.  

The experiments involved an iterative process to recall the 

model using reduced sets of input variables in order to predict 

the target variable for the next time period. The recall process 

is repeated for smaller data sets (K1 < K) until a satisfactory 

level of accuracy is attained. For simplicity, the time interval 

T1 is set to 1 (T1 = 1) out of the total time-frame of T = 12.   

Through this iterative process, the final number of 

important variables (K1) is estimated for a given measurement 

time (T1=1). Table 1 shows the actual Chinese imports (when 

K=8) as well as a number of predicted values based on the 

results of several recall procedures based on various feature 

availability scenarios. It demonstrates that K1 = 3 is the best 

scenario for predicting India's imports from China when only 

the U.A.E., U.S.A., and historical trends of China are 

provided. Consequently, it can be considered a potential 

predictive marker with a minimum error.  

The PAMeT-SNN model is able to activate connections 

based on input variables in order to retrieve stored patterns or 

memories and then recall related patterns even when only a 

subset of input variables is provided. The PAMeT-SNN model 

effectively preserves associations as spatio-temporal 

connections between neurons and retains its initial connections 

that were established during the learning phase when recalling 

the model on a subset of input variables. The model adeptly 

retrieves patterns associated with partially connected input 

features and demonstrates a remarkable capacity for precise 

predictions. Notably, the dissimilarity between the predicted 

import patterns of China, obtained using the complete input 

dataset (Fig. 6a) and the reduced input dataset (Fig. 6b), 

remains minimal. 

Fig.7 shows the predicted and the actual values of the 

import from China when only the input variables are used for 

a reduced time T=1 with an overall RMSE of 0.02.  
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(4a) (4b) 

Fig. 4a. Total information exchanged between the neuronal clusters of input variables; the thicker the lines, the more spikes are 

exchanged between the clusters, meaning a temporal association/correlation of changes in the trade. Fig 4b. Average information 

exchange.  

 

 

(5a) (5b) 

Fig.5a. Neuronal clusters created through unsupervised learning in the SNNcube. Fig. 5b. Cluster proportion: larger clusters represent 

more impact of the input vbariable on the the model. . 

  
TABLE I 

THE PREDICTED PATTERN OF INDIA’S IMPORTS FROM CHINA 

No. of Available  

Input Variables 

Imports from 

China [$B] 
Type 

Prediction Error: 

Value[K] - value[K1] 
Names of the input variables K1 for time T1=1 to recall the model 

K = 8 0.154   Australia, China, Germany, Iraq, Saudi Arabia, UAE, USA, ROW 

K1 = 7 0.148 PAMeT predicted 0.006 Australia, China, Germany, Iraq, Saudi Arabia, UAE, USA 

K1 = 6 0.147 PAMeT predicted 0.007 Australia, China, Iraq, Saudi Arabia, UAE, USA 
K1 = 6 0.134 PAMeT predicted 0.020 China, Iraq, Saudi Arabia, UAE, USA 

K1 = 4 0.147 PAMeT predicted 0.007 Australia, China, Iraq, Saudi Arabia, USA,  

K1 = 3 0.153 PAMeT predicted 0.001 China, UAE, USA 
K1 = 2 0.172 PAMeT predicted 0.018 Australia, China 

K1 = 1 0.162 PAMeT predicted 0.008 China 

     
  

  

                                                                                                                   

    (a)                                                                                                                         (b) 

Fig. 6a. Activated connections when all 8 variables are used for a recall of a fully trained model on the K=8 variables for T=12 data points. 

Fig.6b. Activated connections when only UAE, USA, and China’s (K1=3) time series are used to recall the model for T1=1.  
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       FIG.7. PREDICTED VS ACTUAL VALUES OF THE IMPORT FROM CHINA TO 

INDIA  WHEN THE FULL  PAMET-SNN MODEL IS RECALLED WITH THE USE OF 

K1=3 INPUT VARIABLES FOR A RECALL TIME OF T1=1.  

V. PAMET-SNN ON A CASE STUDY 2 DATA 

A. Case Study on Time Series Commodity Price 

Expanding the scope of this research and aligning it with 

diverse domains in trade, economics, and finance, a second 

case study on commodity market prices was conducted to 

demonstrate the adaptability of the proposed PAMeT-SNN  

method. 

B. Dataset Description 

Complex interaction of economic forces contributes to the 

dynamic nature of commodity markets. According to a recent 

assessment by the World Bank [25], the energy sector 

encountered a notable increase, with energy prices escalating 

by 6% in July 2023. For this case study, market prices of 

eight commodities have been downloaded from the 

International Monetary Fund (IMF) Commodity Portal 

[27][26]. The data spans from January 2010 to May 2023, 

with a total of 161 observations of the monthly market prices 

of the eight selected commodities (Table II). 

 
TABLE II 

THE SELECTED COMMODITIES AS SPATIAL FEATURES 

No. Spatial feature Description 

1 PBANSOP Bananas, US$ per kiloton 

2 PGOLD Gold, US$ per thousand troy ounces 

3 PSAWMAL Sawn wood, US$ per thousand cubic meters 

4 PPLAT Platinum, US$ per thousand troy ounces 

5 PROIL Rapeseed oil, US$ per kiloton 

6 PSOIL Soybean Oil, US$ per kiloton 

7 PSUNO Sunflower oil, US$ per kiloton 

8 PWOOLC Wool coarse, US cents per kiloton 

 

C. Dataset Pre-processing  

Utilizing a sliding window approach with a step size of 1, a 

total of 149 overlapping samples have been generated from 

the original dataset, each of them represented as 8 time series 

of length T=12 time points.   

D. Dataset Modeling 

The generated samples were split in half, where 50% of the 

samples was used for training, and the remaining half for 

incremental learning and validating the model. The proposed 

PAMeT-SNN model encodes spikes using the threshold-

based representation (TBR) algorithm with a spike threshold 

of 0.5 [11]. Initially, the generated spikes are spatially 

mapped into the NeuCube using the graph matching 

algorithm [9] with a small world (SW) connectivity radius of 

2.5. During unsupervised learning, the following NeuCube 

hyperparameters were set: STDP learning rate was set to 0.01, 

potential leak rate was set to 0.002, firing threshold was set to 

0.5, and refractory time was set to 6 units. The modulation 

 factor was set to 0.95 with a drift parameter of 0.03 during 

the supervised mode. 

E. Experimental Results, Analysis, and Visualization 

After the spatial mapping of temporal variables according 

to the similarity of the time series as spatial coordinates, the 

spike-time dependent plasticity (STDP) learning is performed 

on the encoded spikes. Consequently, the connection weights 

between neurons reflect the temporal relationships between 

the input commodities (Fig. 8a). The similarity between the 

Platinum and Gold, as precious metals, are spatially mapped 

next to each other in the SNNcube. 

The feature interaction network (FIN) graph in Fig. 8b 

shows the learned interactions between the input neurons that 

represent the commodity market prices.  

According to the FIN graph, the analyzed feature, 

‘Platinum’, has the highest activity with other features. There 

is a strong direct influence with PGOLD, PSUNO, 

PSAWMAL, and a modest relationship with PWOOLC, 

PROIL, and PSOIL. PGOLD, the other precious metal, is 

strongly connected with PPLAT and PROIL. 

Custers in the SNNcube around the input variables are 

depicted in Fig. 9a, where Platinum’s cluster accounts for 

13% of all spike activity. The accuracy achieved by the 

PAMeT-SNN model was 84%. Subsequently, the model was 

evaluated by performing 2-fold, 3-fold, and 4-fold cross-

validation. The latter provided the highest level of accuracy, 

93% (Fig. 9b). 
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(9a) (9b) 

Fig. 8a. The connectivity in SNNcube during unsupervised learning on market prices K= 8 commodities. Fig. 8b. Total information 

exchanged between the neuronal clusters of commodities, weighted by the thickness of the connections. 
 

 

 

(10a) (10b) 

Fig.9a. Neuronal clusters created through unsupervised clustering in a SNNcube, where the Platinum’s cluster accounts for 13% of 
total spike activity. Fig. 9b. Regression results with a prediction accuracy is 93% after 4-fold cross validation with all 8 variables 

used.. 

 

F. Using the PAMeT-SNN to predict future price with a 

smaller number of input commodity time series variables 

The efficiency of the PAMeT-SNN model in capturing and 

forecasting complex dynamics in the commodities market is 

validated by its application for analyzing and predicting 

commodity market prices. This case study applies many 

experiments on the PAMeT-SNN method with the objective to 

estimate the future market price of the Platinum commodity 

utilizing an incomplete dataset of independent features.  

In accordance with the methodology outlined in section III, 

the PAMeT-SNN model was originally employed for the 

whole input stream (K = 8). Subsequently, the experiments 

involved a repeating procedure whereby the model was 

recalled by using reduced datasets of input variables. The 

recall procedure is iterated for subsets of data that are smaller 

in size (K1 < K) until a desirable degree of precision is 

achieved. 

According to the feature interaction network (FIN) graph 

(Fig. 8b), it can be observed that variables exhibiting a higher 

number of spikes exchanged, are indicated with thick 

connections, and deemed to possess more significance in 

terms of their predictive capabilities throughout the whole  

sample. The time period T1 is set to 1 out of whole 

timeframe T = 12. 

Table III demonstrates that K1 = 4 is the best option for 

predicting the market price of platinum when only the 

PBANSOP, PSAWMAL, PSOIL, and PPLAT historical 

values are available. Consequently, it can be regarded a 

potential predictive marker with a minimum error rate of 

4.2%.  

In contrast, the traditional linear regression analysis of 

univariate variables predicts a 32% error in the market price of 

platinum based solely on their historical trends, as shown in 

Table III's final row. 

The PAMeT-SNN model successfully maintains 

associations by preserving the spatio-temporal connections 

between neurons. Furthermore, when recalling the model on a 

subset of input variables, it retains the initial connections 

established during the learning phase (Fig. 10a, b). When all 

analyzed variables (K=8) are present in the input stream, the 

model effectively captures the complexities of commodity 

price dynamics and depicts the model's full connectivity (Fig. 

10a). The displayed connections have a threshold weight of 

0.1. During recall, where only a subset of input variables is 

available (K1 = 4), certain connections are not present (Fig. 

10b), but that does not prevent an accurate prediction.  
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(11a) (11b) 

Fig. 10a. The connectivity evolution in NeuCube during global training on prices data recorded from the 8 commodities.  
Fig. 10b. The connectivity during local recall on prices recorded from only 4 commodities (PBANSOP, PSAWMAL, PPLAT, PSOIL).  

 
TABLE III 

THE PREDICTED MARKET PRICE OF PLATINUM COMMODITY WITH REDUCED INPUT DATASETS 

No. of Available  

Input Variables 

Imports from 

China [$B] 
Type 

Prediction Error: 

Value[K1] - value[K] 
Names of the available input variables to recall the model 

K = 8 1.0590 Real value - PBANSOP,PGOLD,PSAWMAL,PPLAT,PROIL,PSOIL,PSUNO,PWOOLC 

K1 = 7 1.5148 PAMeT predicted +0.456 PBANSOP,PGOLD,PSAWMAL,PPLAT,PROIL,PSOIL,PWOOLC 

K1 = 6 1.3744 PAMeT predicted +0.315 PBANSOP,PSAWMAL,PPLAT,PROIL,PSOIL,PWOOLC 

K1 = 5 0.8996 PAMeT predicted -0.160 PBANSOP,PSAWMAL,PPLAT,PSOIL,PWOOLC 

K1 = 4 1.1015 PAMeT predicted +0.042 PBANSOP,PSAWMAL,PPLAT,PSOIL 

K1 = 3 1.3043 PAMeT predicted +0.245 PSAWMAL,PPLAT,PSOIL 

K1 = 2 1.2064 PAMeT predicted +0.147 PPLAT,PROIL 

K1 = 1 0.9827 PAMeT predicted -0.076 PPLAT 

K1 = 8 0.7415 Linear Reg. predicted -0.318 PBANSOP,PGOLD,PSAWMAL,PPLAT,PROIL,PSOIL,PSUNO,PWOOLC 

 

This distinctive behavior of the PAMeT-SNN model to 

make good predictions with incomplete input allows it to 

recall relevant information accurately even when operating 

with a reduced set of variables without compromising the 

model’s accuracy. Thus, PAMeT-SNN represents a paradigm 

shift in the field of artificial intelligence. 

VI. DISCUSSION AND CONCLUSION 

PAMeT-SNN model offers an effective approach for time 

series analysis and prediction. Its ability to learn and recall 

complicated temporal patterns qualifies it for a wide range of 

applications in various domains such as finance, engineering, 

and healthcare.  

The proposed here method can be used to extract temporal 

fuzzy rules, to be used for a comparison between fully trained 

and partially recalled PAMeT, adding to the explainability of 

the model [27]. 

In [28] [29], time series environmental data collected over 

40 days, such as pollution, temperature, wind, solar eruption 

and others, are used to predict individual stroke occurrence. 

The proposed PAMeT-SNN can be applied to make on-line 

predictions of individual stroke prediction based only on few 

of these variables and a shorter time, saving human lives.  

In [30] an earthquake prediction system is described that 

uses 100 days seismic spatio-temporal data to predict an 

earthquake event several hours ahead. Here a PAMeT-SNN 

model can be applied for an early event prediction based on 

shorter time series data and smaller number of seismic input 

variables. 

In [31], London city pollution prediction system is 

described and in [32] a similar pollution prediction system is 

presented for the areas of Beijing and Shanghai. They use a 

large number of spatially located sensors to predict pollution 

several hours ahead using their time series measurements. 

PAMeT-SNN model can be applied for an early prediction 

based on shorter time series data and smaller number of 

pollution sensors. 

In [33], different methods were discussed for predicting and 

modeling long time series data on Bulgarian petroleum oil 

imports from 19 key trading partners in order to identify 

abnormal patterns over time. The suggested PAMeT-SNN can 

be used to forecast a crucial commodity based on fewer 

factors, which is especially useful when data is scarce during 

crises and pandemics. 

In [34], financial time series data and online news were 

integrated to improve forecast accuracy and data 

interpretation. The proposed PAMeT-SNN will be applied to 

forecast a stock index using news data and reduced time 

series.  

PAMeT-SNN is suitable for wider range of applications 

where other methods were previously applied [35-38].   

In summary, the paper offers a new trend in AI, where 

instead of creating and recalling many models for the same 

problem, each using same set of temporal variables for 

training and recall, but different variables across the models, 

as it is the case with the deep neural networks, here one 
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PAMeT-SNN is created globally on a large number of time 

series variables and recalled and updated many times locally 

on smaller subsets of variables. This introduces a new 

direction for AI of a global model training and a local model 

recall. 
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