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Abstract

This paper presents a general framework that facilitates the exploration of a single

information-processing system in which auditory and visual information are integrated.

The framework allows for learning, adaptation, knowledge discovery, and decision

making. An application of the framework is a person-identi®cation task in which face

and voice recognition are combined in one system. Experiments are performed using

visual and auditory dynamic features which are synchronously extracted from visual and

auditory information ¯ows. The experimental results support the hypothesis that the

recognition rate is considerably enhanced by combining visual and auditory dynamic

features. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Multimodal information processing

Information from di�erent modalities can support the performance of a
computer system originally designed for a task with a unimodal nature. So, a
system for speech recognition may bene®t from an additional visual informa-
tion stream. For instance, visual information from the lips and the eyes of a
speaker improves the spoken-language recognition rate of a speech-recognition
system substantially [3,7,15,16,21,23]. The improvement per se is already ob-
vious from the use of two sources of information (i.e., sound and images).
However, an integration of the two information streams into a multimodal
information system may be even more e�ective.

Research on multimodal speech-recognition systems started a few years ago
and has shown promising results. A notable example is the successful recog-
nition of words pronounced in a noisy environment, i.e., the `cocktail party
problem' (also known as the `source separation problem') [2,8,24]. The addi-
tional visual information can be used for solving important problems in the
area of spoken-language recognition, such as the segmentation of words from
continuous speech and the adaptation to new speakers or to new accents.

Conversely, auditory information and textual input (possibly synchronised
with the auditory signal) can be used to enhance the recognition of images. For
instance, a challenging task in this area is the identi®cation of moving objects
from their blurred images and their sounds [4,20,22,25]. Obviously, the audi-
tory information does not have to be speech or sounds within the audible
spectrum of human perceivers. It could also be a signal characterised by its
frequency, time, and intensity (e.g., the echolocation of dolphins). Two ques-
tions must be answered. First, how much auditory or textual input information
is required in order to support or improve an image-recognition process sig-
ni®cantly? Second, how should several ¯ows of information become synchro-
nised? Since we believe that a proper contribution of the distinct information
streams leads to better results we aim at the integration of multimodal infor-
mation.

Integrating auditory and visual information in one system requires consid-
eration of the following four questions:
1. Auditory and visual information processing are both multilevel and hierar-

chical (ranging from an elementary feature level up to a conceptual level).
So, at which level and to what degree should the two information processes
be integrated?

2. How should time be represented in an integrated audio-visual information
processing system? This problem relates to the synchronisation of two ¯ows
of information. There are several possible scales of integration, e.g., millisec-
onds, seconds, minutes, years, etc.

3. How should adaptive learning be accomplished in an integrated audio-visual
information-processing system? Within one modality, the system should
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adapt each of its modules dependent on the information processing in the
other modalities.

4. How should new knowledge (e.g., new rules) be acquired about the auditory
and the visual inputs from the real world?
This paper describes a general framework for integrating auditory and vi-

sual information to answer these questions. The application of the framework
is illustrated on a person identi®cation task involving audio-visual inputs.

The outline of the paper is as follows. In Section 2, the connectionist
framework for integrated audio-visual information processing (AVIS) is pre-
sented. Section 3 describes an experimental system for studying audio-visual
person identi®cation (PIAVI). In Section 4 two case studies are performed to
assess the bene®t of combining auditory and visual information processing in a
person-identi®cation task. Section 5 discusses the results of the case studies.
Finally, Section 6 answers the four questions posed above and concludes by
stating that AVIS forms a suitable framework for studying multimodal in-
formation processing.

2. AVIS: a connectionist framework for integrated auditory and visual

information processing systems

Below we describe our connectionist framework AVIS, which combines the
principles from two preceding unimodal models. One model originates from
multilingual adaptive speech processing [10] and the other from image pro-
cessing using dynamic features [18,19]. The global architecture of AVIS is il-
lustrated in Fig. 1, and consists of three subsystems:
1. an auditory subsystem;
2. a visual subsystem;
3. a higher-level conceptual subsystem.

Each of them is speci®ed below, followed by a description of the modes of
operation (See Fig. 2).

2.1. The auditory subsystem

The auditory subsystem consists of ®ve modules. Below we give the main
characterisations.

(a) The auditory pre-processing module transforms the auditory signal into
frequency features, such as mel-scale coe�cients. It accounts for time at a low
level of synchronisation (i.e., milliseconds). Frequency, time and intensity
features are spatially (tonotopically) represented as a sequence of vectors (i.e., a
matrix). The functioning of the pre-processing module may be compared to the
functioning of the cochlea.
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Fig. 1. A block diagram of the framework for auditory visual information processing systems

(AVIS).

Fig. 2. The results obtained in case study 1. The test frames are shown on the x-axis (®rst 10 for

person one, etc.). The output activation values are shown on the y-axis.
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(b) The elementary-sound recognition module is a basic building block of the
subsystem. It is extendable so that new classes of sounds can be added during
operation. A phoneme is adequately represented by a population activity
pattern, i.e., an activity pattern distributed over a cluster of neurons. The
position of the cluster centre can change through learning.

(c) The dynamic-sound recognition module accounts for the dynamical
changes in the auditory information. The auditory cortex of the human brain
functions analogously.

(d) The word-detection module attempts to identify the words. It uses a
dictionary of pre-stored words. In the human brain the auditory detection of
words is part of the cortical language areas [13].

(e) The language-structure detection module accounts for the order in which
words are recognised. It uses linguistic knowledge, language knowledge, and
domain knowledge as well as feedback from the higher-level conceptual sub-
system.

2.2. The visual subsystem

The visual subsystem also consists of ®ve modules. A characterisation fol-
lows below:

(a) The visual pre-processing module mimics the functioning of the retina, the
retinal network, and the lateral geniculate nucleus (LGN).

(b) The elementary-feature recognition module is responsible for the recog-
nition of features such as the curves of lips or the local colour. The peripheral
visual areas of the human brain perform a similar task.

(c) The dynamic-feature recognition module detects dynamical changes of
features in the visual input stream. In the human brain, the processing of visual
motion is performed in area V5/MT.

(d) The object-recognition module recognises elementary shapes and their
parts. This task is performed by the infero-temporal (IT) areas of the human
brain.

(e) The object-con®guration recognition module recognises con®gurations of
objects such as faces. This task is performed by the IT and parietal areas of the
human brain.

2.3. The higher-level conceptual subsystem

The higher-level conceptual subsystem takes its inputs from all modules of
the lower-level subsystems and activates the clusters of neurons representing
concepts (e.g., familiar persons) or meanings. The clusters of neurons are
connected to the action part of the system (corresponding to the motor areas of
the brain). In a person-identi®cation task, the conceptual subsystem takes
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information from all the modules in the auditory and visual subsystems and
makes a decision on the identity of the person observed.

2.4. Modes of operation

Our framework AVIS allows the auditory subsystem as well as the visual
subsystem to operate as a separate subsystem. Their distinct outputs will then
be combined in the higher-level subsystem. In addition, each subsystem in
isolation is able to accommodate both unimodal and bimodal input streams.
Altogether, AVIS can operate in six main modes of operation.
· The unimodal auditory mode: the auditory subsystem processes auditory in-

put only (e.g., spoken-language recognition from speech).
· The cross-modal auditory mode: the auditory subsystem processes visual in-

put only (e.g., speech recognition from lip movements).
· The bimodal auditory mode: the auditory subsystem processes both visual

and auditory inputs (e.g., spoken-language recognition from speech and
lip movements).

· The unimodal visual mode: the visual subsystem processes visual input only
(e.g., face recognition).

· The cross-modal visual mode: the visual subsystem processes auditory input
only (e.g., an image-recognition system trained on audio-visual inputs recalls
images from their associated sounds).

· The bimodal visual mode: the visual subsystem processes both visual and au-
ditory inputs (e.g., recognising a speaker by his speech and face).
Furthermore, each of the six modes can be combined with conceptual

processing in the conceptual subsystem. There are various strategies for com-
bining multimodal sources of information. We propose the principle of sta-
tistically based specialisation for taking decisions based on di�erent sources of
information (i.e., modalities). In general, the auditory and visual subsystems
deal with di�erent parts of a task. For instance, take a person-identi®cation
task, then the auditory subsystem is responsible for recognising a person's
voice and the visual subsystem for recognising a person's face. Each of the
subsystems makes its own contribution to the overall task. The conceptual
subsystem weights the contributions of the two subsystems according to their
(average) recognition rates. The weights have values that are proportional to
the probability of each subsystem to produce a correct classi®cation. For ex-
ample, if the recognition probability of the visual subsystem is 0.7, and the
recognition probability of the auditory subsystem is 0.5, then the weights of the
two inputs to the conceptual subsystem are 0.7/1.2 and 0.5/1.2 for the visual
and auditory subsystems, respectively. Hence, the conceptual subsystem as-
signs more weighted 'trust' to the visual subsystem. The principle of statisti-
cally based specialisation can be readily implemented in a connectionist way.
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3. PIAVI: an experimental system for person identi®cation based on integrated

auditory and visual information processing

The AVIS framework can be applied to tasks involving audio-visual data.
As an instantiation of the AVIS framework, we have developed the person
identi®cation based on auditory and visual information (PIAVI) system which
identi®es moving persons from dynamic audio-visual information.

3.1. PIAVI's subsystems

The global structure of PIAVI resembles the structure of AVIS. However, in
PIAVI the auditory and visual subsystems are treated as single modules rather
than as sequences of modules. Each of the subsystems is responsible for a
modality-speci®c subtask of the person-identi®cation task. The visual subsys-
tem processes visual data associated with speech, i.e., lip reading, or facial
expressions. The inputs to this subsystem are raw visual signals. These signals
are pre-processed, e.g., by normalising or edge-enhancing the input image.
Further processing subserves the visual identi®cation of the person's face. The
auditory subsystem of PIAVI comprises the processing stages required for
recognising a person by speech. The inputs of the subsystem are raw audio
signals. These signals are pre-processed, i.e., transformed into frequency fea-
tures, such as mel-scale coe�cients, and further processed to generate an
output suitable for identi®cation by speech. The conceptual subsystem takes
inputs from the two subsystems and activates concepts. For instance, the ac-
tivation of the concept `Bill Clinton' may result from his voice being processed
by the auditory subsystem and his face being processed by the visual subsys-
tem.

3.2. PIAVI's modes of operation

PIAVI has four modes of operation, brie¯y described below:
(a) The unimodal visual mode takes visual information as input (e.g., a face),

and classi®es it. The classi®cation result is passed to the conceptual subsystem
for identi®cation.

(b) The unimodal auditory mode deals with the task of voice recognition. The
classi®cation result is passed to the conceptual subsystem for identi®cation.

(c) The bimodal (or early-integration) mode combines the bimodal and cross-
modal modes of AVIS by merging auditory and visual information into a
single (multimodal) subsystem for person identi®cation.

(d) The combined mode synthesises the results of all three modes (a), (b) and
(c). The three classi®cation results are fed into the conceptual subsystem for
person identi®cation.
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4. Two case studies

In two case studies we examine the bimodal processing of audio-visual in-
formation in PIAVI. The ®rst case study consists of a preliminary investigation
using a small dataset with the aim of assessing the bene®cial e�ects of inte-
grating auditory and visual information streams at an early locus of processing.
The second case study employs a larger dataset to evaluate the relative e�-
ciencies of unimodal and bimodal processing in solving the person-identi®ca-
tion task.

4.1. Case study 1 [12]

The ®rst case study aims at evaluating the added value of combining au-
ditory and visual signals in a person-identi®cation task. An additional goal is
to assess the complexity of the task of identifying persons from dynamic au-
ditory and visual input.

4.1.1. The dataset
Given the goals of the study, the dataset has to ful®l two requirements. First,

it should contain multiple persons. Second, the persons contained in the da-
taset should be audible and visible simultaneously. To meet these two re-
quirements, we downloaded a digital video containing small fragments of four
American talk-show hosts, from CNNÕs web-site. The movie contains visual
frames accompanied by an audio track. Each frame lasts approximately 125
ms. During most of the frames, the hosts are both visible and audible. The
dataset is created as follows. Twenty suitable frames, i.e., frames containing
both visual and auditory information, are selected for each of the four persons
(hosts). The visual and auditory features are extracted from these 2.5-s frag-
ments (20 frames).

4.1.2. Feature extraction
Person recognition relies on an integration of auditory and visual data.

Although static images may su�ce for person recognition [6], in our study we
rely on dynamic visual information for two reasons in particular. First, dy-
namic features avoid recognition on the basis of unreliable properties, such as
the accidental colour of the skin or the overall level of lighting. Second, the
added value of integrating auditory and visual information at an early level lies
in their joint temporal variation.

Our emphasis on dynamical aspects implies that the integration of au-
ditory and visual information requires an extended period of time. The
duration required for integration varies depending on the type of audio-
visual event. For early integration, a duration of about 100 ms may su�ce
when short-duration visual events (e.g., the appearance of a light) are to be
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coupled to short-duration auditory events (e.g., a sound). However, when
dynamical visual events such as face and lip movements are to be coupled
to speech, a duration of at least half a second is required. To accommodate
early integration, we de®ned aggregate features encompassing the full du-
ration (i.e., 125 ms) of the video segments for both modalities.

4.1.3. Visual features
The images (i.e., frames of video data) contained in each segment need to be

transformed into a representation of the spatio-temporal dynamics of a per-
sonÕs head. It is well known that spatio-temporal features are important for
person identi®cation tasks (see, e.g., [14]). Behavioural studies show that facial
expressions, probably person-speci®c, ¯icker rapidly across the face within a
few hundred milliseconds [5]. Since the head moves in several directions during
a segment, a means of compensating for these variations in a three-dimensional
pose is required. Moreover, the head should be segmented from the back-
ground to remove background noise. To ful®l these requirements, we used a
straightforward spatial-selection method. A single initial template was de®ned
for each person in the dataset. The size of the template was set at M � N pixels,
with M � 15 and N � 7. The templates intended to cover the entire head. The
content of each template was cross-correlated with the content of the next
video frame [19]. The best-matching M � N part of the next frame served as a
starting point for the extraction of visual features and was de®ned as the new
template.

A commonly-used technique for extracting features from images is based on
principal-component analysis. For instance, in their lip-reading studies, Luettin
et al. [14] employed principal-component analysis on the visual lip-shape data.
However, a comparative study of (dynamic) features for speech-reading [8]
showed that a `delta' representation, based on the di�erences in grey values
between successive frames, works better than a representation based on prin-
cipal-component analysis. For this reason we used the delta representation to
generate our visual features.

The visual features were obtained as follows. The absolute values of the
changes of subsequent frames yield the elements of a delta image �D, de®ned as

�D�x; y� � I�tj � 1; x; y� ÿ I�t; x; y�j �1�

with I�t; x; y�, the grey value of the pixel at co-ordinate �x; y� of frame t (t
represents the frame number).

4.1.4. Auditory features
The audio signal is transformed into the frequency domain using standard

FFT (256 points; sampling rate 11 kHz; one channel, one byte accuracy)
in combination with a Hamming window, yielding a sequence of vectors
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containing 26 mel-scale coe�cients. Each vector represents an audio segment
of 11.6 ms, with 50% overlap between the segments. The mel-scale vectors
averaged over a duration of approximately 125 ms are represented as `audio
frames' (i.e., vectors containing averaged mel-scale coe�cients). By subtracting
subsequent frames, a delta representation is obtained that is similar to the
visual representation. The auditory features are vectors containing three delta
representations obtained at three di�erent time lags.

4.1.5. Modelling the subsystems
The subsystems of PIAVI are modelled using fuzzy neural networks

(FuNNs) [9]. Each of the input and output nodes of a FuNN has a semantic
meaning. FuNNs are designed to facilitate the use of both data and fuzzy
rules in a connectionist framework. They allow for easy adaptation, modi®-
cation, rule insertion, and rule extraction. The unimodal visual mode of
operation is modelled as a FuNN with 105 (N �M) input nodes, 315 input
membership functions (3 per input node, i.e., representing the fuzzy repre-
sentations `small', `medium', and `high'), 5 hidden nodes, 4 output nodes (for
the four hosts), and 8 output membership functions (2 per output, i.e., rep-
resenting the fuzzy classi®cations `unlikely', and `likely'). The unimodal au-
ditory mode of operation is modelled as a FuNN with 78 (3� 26) input
nodes, 234 input membership functions, 5 hidden nodes, 4 output nodes, and
8 output membership functions. The bimodal, early-integration mode of
operation is modelled by a FuNN with the same dimensions except for the
input. There are 183 input nodes (105 for visual features plus 78 for auditory
features) and 549 membership functions. Finally, in the combined mode of
operation the two unimodal modes and the bimodal mode are combined. The
higher-level concept subsystem is modelled according to the principle of
statistically based specialisation. The criterion for classi®cation is as follows.
The output node with the largest activation de®nes the class assigned to the
input pattern.

4.1.6. Experimental procedure
The FuNNs assembling PIAVI are trained by a modi®ed backpropagation

algorithm with a learning rate of 0.01 and a momentum of 0.8. Their training
periods are 5000, 8000, and 6000 epochs for the unimodal auditory mode, the
unimodal visual mode, and the early-integration modes of operation, respec-
tively. The combined mode of operation is simulated by determining the ap-
propriate weights of the three trained FuNNs. To assess the generalisation
performance, the dataset is split into a training set and a test set, each con-
taining 10 examples. The FuNNs are trained on the training set. The gener-
alisation performance is de®ned as the classi®cation performance on the test
set.
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4.1.7. Results
The results of the simulations are shown in Table 1. The performances

achieved in the experiments are not very high. This may be due to (at least)
three reasons: the limited number of examples contained in the training set, the
limited temporal extent of the aggregated features, and the low quality of the
dataset. Nevertheless, the overall recognition rate in the early-integration mode
of operation is 12.5% higher than the recognition rate of the unimodal auditory
mode, and 17.5% higher than the recognition rate in the unimodal visual mode
of operation. The overall recognition rate achieved in the combined mode is
22% higher than the recognition rate in the unimodal visual mode, 17% higher
than the recognition rate in the unimodal auditory mode, and 4% higher than
the recognition rate in the early-integration mode of operation.

The experimental results do not allow us to reject the main hypothesis of this
research, viz. that the AVIS framework and its realisation PIAVI achieve a
better performance when auditory and visual information is integrated and
processed together.

4.2. Case study 2

The second case study attempts to improve and extend the results obtained
in the ®rst case study by employing a larger (more realistic) dataset and by
de®ning aggregate features representing longer temporal intervals.

4.2.1. The dataset
Existing large audio-visual datasets contain segments of persons in a highly-

constrained setting. For instance, the TULIPS1 database [17] was created by
carefully positioning persons in front of a camera and instructing them to
count from one to four. Since we felt uncomfortable with such a unrealistic
setting, we created our own dataset. We recorded CNN broadcasts of eight
fully-visible and audibly-speaking presenters of sport and news programs (see

Table 1

The generalisation performances of case study 1

Person 1 Person 2 Person 3 Person 4 % Recognition

rate

The auditory subsystem

only

7 5 3 9 60

The visual subsystem

only

4 6 5 8 57.5

Early-integrated features

module

7 8 3 8 67.5

Higher-level conceptual

subsystem

7 8 4 9 70
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Fig. 3). All recordings were captured into digital format (using a standard PC
equipped with an Hauppage WinTV capture card). The digital video ®les so
obtained were edited with a standard video editor. This yielded video segments
of 1-s length at F � 15 frames per second. Each segment contains F � 1
frames. The visual and auditory features were extracted from these segments.

4.2.2. Visual features
As in the ®rst case study, the F � 1 images (i.e., the frames of video data)

contained in each segment are transformed into a representation of the spatio-
temporal dynamics of a personÕs head. The extraction of visual features in this
case study di�ered in three respects from the extraction in the ®rst study. First,
in segmenting the face from the background, a ®xed template was used for each
person, instead of rede®ning the template with each new frame. The size of the
template is de®ned as M � N pixels, with M � 40 and N � 20. Fig. 4 shows the
face template used for the person displayed in Fig. 3. Second, the temporal

Fig. 3. An example of a frame used in the dataset.

Fig. 4. The face template used for video's containing the person shown in Fig. 3.
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extent of the aggregate features is extended over a 1-s period to accommodate
temporal variations over a longer interval. The aggregate features were ob-
tained as follows. The absolute values of the changes for a 1-s period (i.e.,
F � 1 frames) are summed pixel-wise, yielding an average-delta image �D, the
elements of which are de®ned as

�D�x; y� � 1

F

XF

t�1

I�tj � 1; x; y� ÿ I�t; x; y�j �2�

with I�t; x; y�, the colour value of the pixel at co-ordinate �x; y� of frame t (t
represents the frame number). Third, a compressed representation of the delta
image is used instead of a representation based on all pixel values. The ®nal
aggregate visual features are contained in a vector v, the elements of which are
the summed row values and the summed column values of the average-delta
image. Formally, the elements v�i� of v are de®ned as

v�i� � 1

N

XN

j�1

�D�j; i� for 16 i6M �3a�

and

v�i� � 1

M

XM

j�1

�D�iÿM � 1; j� for �M � 1�6 i6 �M � N�: �3b�

4.2.3. Auditory features
The auditory features are extracted according to the procedure described in

the ®rst case study, except for the aggregated features that are obtained by
averaging over a 1-s interval.

4.2.4. Modelling the subsystems
The unimodal visual mode of operation is modelled as a FuNN with 60

�� N �M� input nodes, 180 input membership functions, 10 hidden nodes, 8
output nodes, and 16 output membership functions. The bimodal mode of
operation is modelled using a FuNN with the same dimensions except for the
input. There are 86 input nodes and 258 membership functions. The higher-
level concept subsystem is not modelled explicitly. It is (partly) contained in the
output layers of the FuNNs. The criterion for classi®cation is that the output
node with the largest activation de®nes the class assigned to the input pattern.

4.2.5. Experimental procedure
The experimental procedure used for simulating the two modes of

operation was as follows. The unimodal mode of operation was studied by
presenting the visual examples to the appropriately-dimensioned FuNN
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network (Experiments 1 and 2). In the bimodal mode of operation a FuNN
with an extended input was used to accommodate the audio-visual input
pattern (Experiment 3). In all experiments the learning rate and the mo-
mentum parameters were set to 0.01 and 0.8, respectively.

4.2.6. Experiment 1: unimodal processing
To assess the performance of PIAVI in the unimodal mode of operation the

visual subsystem was trained until the optimal generalisation performance was
reached (early stopping). The training set contained 385 examples (corre-
sponding to a total of 385 s of video playing time). The test set contained 100
examples. The distribution of the examples in the training and test sets over the
eight classes (persons) contained in the dataset is shown in Table 2.

4.2.7. Results
A perfect generalisation performance (100% correct classi®cation on the test

set) was obtained after 5000 epochs of training (4380 s on a Pentium 166 MHz
computer). Upon completion, the RMS error was 0.27 on the training set, and
0.29 on the test set. PIAVI's performance on the unimodal task was unex-
pectedly good, even too good for potential improvement in the bimodal mode
of operation. Given this result, it is very likely that the aggregate visual features
contain dynamical information that is diagnostic for the identity of the person.
Moreover, this information is hardly (if at all) a�ected by changes in the ori-
entations of the heads. Possibly, the metrical information contained in the
visual examples acts as a reliable diagnostic feature. Both the eyes and mouth
are highly dynamic during speech, yielding large values at two vertical loca-
tions as represented in the ®rst M elements of the visual vector (cf. Eq. (2)). The
distance between these locations may have been a reliable diagnostic feature for
person identi®cation for the FuNN. These considerations are corroborated by
the graphs in Fig. 5 displaying the v�i� as a function of i for 10 examples of a
single class. The peaks at i � 15 and i � 30 correspond to the (dynamics of the)
eyes and mouth during a 1-s interval.

Table 2

Distribution of examples over the datasets for case study 2

Person # Examples in the training set # Examples in the test set

1 50 10

2 50 10

3 70 10

4 30 10

5 40 10

6 50 10

7 25 10

8 70 30

140 N. Kasabov et al. / Information Sciences 123 (2000) 127±148



4.2.8. Experiment 2: unimodal processing with a small training set
The setting is as in Experiment 1, but here a smaller training set is used

(5 examples per class) and the FuNN is trained for a short time, i.e., 500 ep-
ochs. The test set contains 25 examples per class, except for the class corre-
sponding to speaker 1 which contains 5 examples only.

4.2.9. Results
An overall generalisation performance of 75% correct classi®cation was

obtained after 500 epochs (90 s simulation time). The RMS errors were 0.34
and 0.81 for the training and test sets, respectively.

4.2.10. Experiment 3: bimodal processing
To assess the performance of PIAVI in the bimodal mode of operation, 40

early-integrated audio-visual examples (®ve per class) are presented to the
FuNN repeatedly, until the performance on the test set is optimal.

4.2.11. Results
An overall generalisation performance of 91% correct classi®cation on the

test set was obtained after 1000 epochs (150 s of simulation time). The ®nal
RMS errors on the training and test sets were 0.24 and 0.68, respectively. The
individual generalisation performances of the bimodal mode of operation are
shown in Table 3.

4.2.12. Summary and discussion of results
In the second case study, three experiments were carried out (see the sum-

mary of the results in Table 3). In Experiment 1, a perfect generalisation

Fig. 5. Graphs showing v�i� as a function of i for 10 examples of one class.
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performance is obtained when a large training set is used (i.e., visual data
corresponding to 385 s) and a FuNN is trained for a long time (4380 s). This
type of training is not suitable if fast, on-line training on short, noisy visual
reference data is required. Reducing the size of the training set (i.e., corre-
sponding to 40 s) and the amount of training time (i.e., to 90 s) in Experiment
2, led to a decrease in the generalisation performance (75%). Combination of
the visual and auditory data in Experiment 3, yielded a major improvement in
generalisation performance (e.g., 91% obtained within 150 s of simulation
time).

The contribution of the non-linear FuNNs to the results becomes evident by
considering the generalisation performances obtained with standard linear
statistical methods such as canonical discriminant functions. Fig. 6 displays a
plot of all auditory examples mapped on the ®rst two discriminant functions.
Fig. 7 shows the same plot for all visual examples. The mapping of the audio-
visual examples are displayed in Fig. 8. A subset of these examples is plotted in
Fig. 9 as a two-dimensional con®guration obtained with a multidimensional
scaling procedure. The low-dimensional con®guration represents the high-di-
mensional con®guration in audio-visual feature space by preserving the inter-
point distances as much as possible. The generalisation performances obtained
with the discriminant-functions model (measured using the leaving-one-out

Fig. 6. Mapping of the auditory dataset on the ®rst two discriminant functions.
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procedure) are 37.3%, 64.1%, and 66.4%, for the auditory, visual, and audio-
visual examples, respectively. Evidently, the FuNNs contribute signi®cantly to
the generalisation performances obtained in this case study.

5. General discussion

The results of the two case studies prove the added value of integrating
auditory and visual information for person identi®cation. In the ®rst case
study, which used a small training set, combining the auditory and visual in-
formation enhanced the generalisation performance. In the second case study,
the ®rst experiment showed that, with a large number of training examples,
unimodal processing on the basis of dynamical visual features leads to a perfect
performance on a large dataset. This is an interesting phenomenon. Behav-
ioural studies suggest that humans are not very good at identifying persons
from their facial dynamics [14]. Nevertheless, the unimodal PIAVI system
managed to deal with this task perfectly well. The second and third experiments
showed that adding dynamic auditory input to the visual input enhances the
identi®cation performance considerably. In these experiments a smaller train-
ing set was used. From a practical viewpoint, the use of smaller training sets,

Fig. 7. Mapping of the visual dataset on the ®rst two discriminant functions.
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facilitates the speed at which the PIAVI system in its bimodal mode of oper-
ation learns to classify persons from video data. On a standard desktop
computer, the training times were 4386, 90, and 150 s, for the Experiments 1, 2,
and 3, respectively. The latter two training times make on-line training on
video data feasible. In the bimodal case, on-line training yields a satisfactory
level of performance (>90%). Therefore, our results show the feasibility of
applying the PIAVI system to on-line person identi®cation tasks.

6. Conclusions and directions for further research

We have introduced the AVIS framework for studying the integrated pro-
cessing of auditory and visual information. The framework facilitates the study
of:
· di�erent types of interaction between modules from hierarchically-organised

subsystems for auditory and visual information processing;
· early and late integration of the auditory and the visual information ¯ows;
· dynamic auditory and visual features;
· pure connectionist implementations at di�erent levels of information pro-

cessing, and

Fig. 8. Mapping of the integrated visual-auditory dataset on the ®rst two discriminant functions.
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· fuzzy neural networks that allow for learning, adaptation, and rule extrac-
tion.
The integrated processing of auditory and visual information may yield:

1. an improved performance on classi®cation tasks involving information from
both modalities (cf. case study 1), and

2. reduced recognition latencies on these tasks (see case study two).
The AVIS framework accommodates many applications for solving di�cult

AI problems. Examples of such problems are: adaptive speech recognition in a
noisy environment, face tracking and face recognition, person identi®cation,
tracking dynamic (moving) objects, recognising the mood or emotional state of
subjects based on their facial expression and their speech, and solving the
blind-source separation problem. Through solving these problems, the devel-
opment of intelligent multimodal information systems is facilitated. Given the
results obtained with PIAVI we conclude that AVIS forms a suitable frame-
work for studying multimodal information processing.

For the integration of auditory and visual information we formulated four
questions to be answered by the AVIS framework. The ®rst question was:

Fig. 9. Multidimensional scaling map of the Euclidean distance in the audio-visual space into two

dimensions (vp.00n means the vector of the nth example of person p; only 5 examples per person

have been mapped).
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at which level and to what degree should the auditory and visual information
processes be integrated? The AVIS framework accommodates for integration at
multiple levels and at various degrees. It seems that early integration works
®ne, but a further ®ne-tuning is required to obtain a better insight into the
possibilities. The second question was: how should time be represented in an
integrated audio-visual information processing system? In our two case studies
we examined bimodal processing using an aggregate vector representation.
with time included. This representation was especially e�ective when using
longer time intervals. For shorter time intervals, other ways of representing
time should be investigated. The third question was: how should adaptive
learning be realised in an integrated audio-visual information processing system?
In the AVIS framework we solved this question satisfactorily by introducing
FuNNs. Other techniques may be possible, but a deeper investigation of
FuNNs is tenable and should generate good results. The fourth question was:
how should new knowledge be acquired about the auditory and visual inputs of the
real world? Translating the hidden representations of the FuNNs into rules
answers this question initially. Future research should elaborate on questions
three and four, and focus on the required new learning techniques for on-line,
adaptive learning.

The ECOS [11] technique can be applied to the realisation of the AVIS
framework and will be the subject of future experiments. As AVIS is inspired
by facts from psychology, more biologically pro®cient specimens of AVIS are
envisaged [1].
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