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Abstract— At present, multimodal medical image fusion tech-
nology has become an essential means for researchers and doctors
to predict diseases and study pathology. Nevertheless, how to
reserve more unique features from different modal source images
on the premise of ensuring time efficiency is a tricky problem.
To handle this issue, we propose a flexible semantic-guided
architecture with a mask-optimized framework in an end-to-end
manner, termed as GeSeNet. Specifically, a region mask module
is devised to deepen the learning of important information
while pruning redundant computation for reducing the runtime.
An edge enhancement module and a global refinement module
are presented to modify the extracted features for boosting
the edge textures and adjusting overall visual performance.
In addition, we introduce a semantic module that is cascaded
with the proposed fusion network to deliver semantic information
into our generated results. Sufficient qualitative and quantitative
comparative experiments (i.e., MRI-CT, MRI-PET, and MRI-
SPECT) are deployed between our proposed method and ten
state-of-the-art methods, which shows our generated images
lead the way. Moreover, we also conduct operational efficiency
comparisons and ablation experiments to prove that our proposed
method can perform excellently in the field of multimodal medical
image fusion. The code is available at https://github.com/lok-
18/GeSeNet.
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I. INTRODUCTION

WITH the rapid development of medical imaging tech-
nology during the past decades, multimodal medical

images have been widely applied in clinical diagnosis, medical
research, and surgical navigation [1]. Due to the difference
between imaging equipment and techniques, various kinds
of medical images highlight different information (e.g., bone
contours and the location of the tumor), which can be roughly
separated into two categories, that is, structural medical images
and functional medical images [2]. As a typical kind of
structural medical image, magnetic resonance imaging (MRI)
images perform soft-tissue structure information for doctors
and researchers to study. Computed tomography (CT) images
can provide an outline of bone structure and brain anatomical
information clearly with high resolution. However, structural
medical images such as MRI and CT images are insensitive
to functional information in human metabolism [3].

As a representative in the field of functional medical images,
positron emission tomography (PET) images play an important
role [4], which characterizes metabolic function, blood flow,
and some tumor information in brain tissue. In addition,
single-photon emission CT (SPECT) images as another vital
functional medical image can highlight tissue damage and
organ information [5]. Nonetheless, functional medical images
still suffer from low-resolution performance and disable to
accurately display structural information. Therefore, combin-
ing advantages from different modality medical images and
merging them into a single image can not only improve the
visual effect and complementarity of images, but also help
doctors improve the accuracy of clinical diagnosis and disease
forecasting [6].

Traditional and deep-learning-based methods are widely uti-
lized in existing multimodal image fusion methods. Regardless
of traditional or deep-learning-based methods [7], [8], their
common purpose is to extract practical features from different
single-source images and generate vivid fused images through
a designed fusion strategy or network model. In most tradi-
tional methods, feature fusion rules based on spatial [9] and
transform domain transformation [10] are employed generally.
These traditional methods generate a new fused image by
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transforming specific regions and then reconstructing them
together. However, drawing complicated fusion rules manually
is an inevitable procedure in traditional methods, which makes
the efficiency of the fusion process reduce. Furthermore, fusion
results may appear as undesirable artifacts by using the same
decomposition operation to handle source images of different
modalities.

In recent years, to ameliorate the disadvantages of tradi-
tional methods, deep-learning-based approaches are introduced
to conduct multimodal image fusion tasks. Researchers can
avoid the complexity of handcrafted fusion rules via end-to-
end models [11]. Moreover, different modules in architecture
can correctly extract their unique features from multiple
single-modal images. Nevertheless, there still exist several
limitations: 1) semantic information is often ignored in the
multimodal fusion task, so that some artifact halos may occur,
debasing the quality of the generated results; 2) some existing
deep-learning-based approaches increase network scales to
improve the quality of fused images, which causes a large
number of redundant computations and makes running time
too long; and 3) owing to the inaccurate extraction of promi-
nent features in each source image, it is a great challenge to
perform well in some texture details of fused images.

To alleviate these above-mentioned limitations, in this arti-
cle, we proposed a flexible semantic-guided framework with
mask-optimized models in an end-to-end manner for fusing
multimodal medical images, called GeSeNet. Specifically,
we concatenate our proposed fusion network with a pretrained
semantic module. With the help of the semantic module, the
semantic information of our fusion results can be increased
significantly. For combining the extracted semantic informa-
tion with fused images more realistically, we proposed an
edge enhancement module and a corresponding edge loss
function to cooperate with our network to highlight edge
textures. The region mask module is introduced to identify
“principal” and “redundant” regions in source images. As the
flexible division of different regions, our proposed method
can reduce superfluous computing and promote operational
efficiency. Besides, we employ a global refinement module to
optimize features extracted from the edge and mask modules,
which can recover more textural details and achieve fusion
results with fine visual effects. Fig. 1 compares U2Fusion [12]
and EMFusion [13] with our proposed method through a
set of MRI-CT, MRI-PET, and MRI-SPECT fused results.
Noticeably, our method leads the way.

In short, we summarize our proposed work as the following
four contributions.

1) We devise a novel fusion network called GeSeNet for
fusing multimodal medical images, including MRI-CT,
MRI-PET, and MRI-SPECT pairs. Different from pre-
vious deep-learning methods, we introduce a pretrained
semantic module and a newly designed semantic loss
function to cascade with our fusion network, so that
some missing details of fused images can be comple-
mented during the training phase.

2) We propose an edge enhancement module with a gra-
dient filter and formulate its edge loss function in our
proposed network. By guiding the network training via

Fig. 1. Schematic illustration of our proposed method. Clearly, compared
with U2Fusion and EMFusion, the proposed method provides more attractive
details, edge textures, and faithful color on different multimodal medical
image fusion tasks.

back-propagation, the enhanced-edge features can be
extracted as a prior condition to reduce the appearance
of edge artifacts and achieve realistic fused results.

3) Through the discrimination of the region mask module,
our proposed method can intensify the representation
of significant features while skipping the redundant
computation to complete the whole fusion process in
less time. Moreover, to get higher-performance fused
results, we initiate a global refinement module for
revising extracted details simultaneously from the edge
enhancement and region mask modules.

The remainder of this article is established as follows.
Section II summarizes the related works of multimodal med-
ical image fusion. Section III gives a detailed interpretation
of the proposed method, including the overall framework, the
edge enhancement module, the region mask module, the global
refinement module, and the loss function. In Section IV, exten-
sive qualitative and quantitative experiments are conducted to
verify the advantage of our proposed method. Furthermore,
we perform ablation experiments to analyze the effect of each
module. Finally, the conclusion is given in Section V.

II. RELATED WORKS

In this section, we review previous studies about multimodal
medical image fusion from model-driven methods, data-
driven deep-learning methods, and model-driven deep-learning
methods.

A. Model-Driven Methods

In the past, traditional methods use models to drive for
fusion. The multiscale transform-based (MST) approach, for
example, wavelet transform [14], pyramid transform [15], and
subspace transform [16], is the most commonly employed
in traditional methods. In MST approaches, researchers
often transform source images into a mutable matrix, fuse
related parameters, and implement inverse matrix transfor-
mation to complete the fusion process. Moreover, sparse
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representation-based methods [17], salient feature-based meth-
ods [18], and so on are also widely applied in multimodal
medical image fusion.

Specifically, the wavelet transform-based methods can
be roughly divided into discrete wavelet [19], stationary
wavelet [20], lifting wavelet [21], and so on. As a represen-
tative, Cheng et al. [22] proposed an innovative architecture
based on wavelet transform to achieve the goal of fusing CT
images with PET images, which can exactly detect patholog-
ical changes. Bhavana and Krishnappa [23] first employed
Gaussian filters to preprocess source images and then used
the discrete wavelet to enhance the performance of fusion
results. Quantitative indicators, that is, average gradient and
spectral discrepancy, achieve high marks by using this method.
Ganasala and Prasad [10] introduced a novel approach based
on stationary wavelet transformation and texture energy mea-
sures to solve issues of poor contrast and low computing
ability.

Laplacian pyramid transform-based methods also per-
form extensively in multimodal medical image fusion.
Sahu et al. [24] utilized the Laplacian pyramid with dis-
crete cosine transform (DCT) to decompose source images
as different low-pass-filtered patches. The quality of fused
images is positively related to the number of levels in the
pyramid. He et al. [25] integrated the advantages of intensity–
hue–saturation (IHS) transform and principal component
analysis (PCA) to improve the performance of fused images.
Krishn et al. [26] used PCA to maximize the spatial resolution
on the decomposed coefficients.

B. Data-Driven and Model-Driven Deep-Learning Methods

During the last decade, it has become rapidly popular that
scholars use deep-learning-based methods to solve multimodal
medical image fusion, which can be divided into data-driven
and model-driven approaches [27], [28], [29], [30].

As a representative, Singh and Anand [31] presented a novel
method with a two-scale l1-l0 hybrid layer decomposition
scheme to avoid artifacts and noise on the feature level.
With this approach, they could fuse source images in the
decomposed base and detail layer. Liu et al. [32] introduced
a Siamese convolutional network to obtain a weight map that
contains the pixel activity information from inputs. A local
similarity strategy was employed to regulate the fusion mode.
Song et al. [33] proposed a multiscale DenseNet called MSD-
Net through an encoder–decoder model, which used three
different filters to extract features.

In some unified fusion frameworks, multimodal medical
image fusion has become an important branch to reveal
its comprehensiveness. Zhang et al. [34] presented a novel
method with excellent generalization ability to improve per-
ceptual information in fused images. Xu et al. [12] proposed
an adaptive retention mechanism to conduct multimodal (i.e.,
infrared and visible images and medical images), multiexpo-
sure, and multifocus image fusion. Liu et al. [35] mentioned
a bilevel optimization paradigm for multimodal image fusion,
which used a formulaic decomposition method to complete
fusion processing between two modalities.

Fig. 2. Overall framework of the proposed method. Source images are
first input into a multimodal medical image fusion network to generate
original fusion images and then fed into a semantic module to extract
semantic information. Finally, by passing the semantic information to the
fusion network for reprocessing, we can obtain well-performed fusion results.

Moreover, pulse coupled neural network (PCNN)-based
methods are also very active in the field of multimodal
medical image fusion. Wang and Ma [36] proposed a novel
multichannel model, that is, m-PCNN, to deal with different
models of medical images for the first time. Xu et al. [37]
introduced the adaptive PCNN, which was optimized by
the quantum-behaved particle swarm optimization (QPSO)
algorithm. They used the PCNN model to find optimal
parameters about source images for fusion. In the NSST
domain, Ganasala and Kumar [38] motivated PCNN to process
low-frequency (LF) and high-frequency (HF) subbands by
normalized coefficient value. The generated fused images
performed more details and better contrast.

III. METHODOLOGY

In this section, we describe the flexible mask-refined mul-
timodal medical image fusion architecture in detail. At first,
we introduce the overall framework of the proposed GeSeNet
in Section III-A. Then, three devised modules, that is, the edge
enhancement module, the region mask module, and the global
refinement module, are explained in Sections III-B–III-D,
respectively. Moreover, we discuss the specific representation
of the loss function in Section III-E, including the edge and
semantic loss functions.

A. Overall Framework

The overall framework of our proposed method is shown
in Fig. 2, which consists of a multimodal medical image
fusion network and a semantic module. As different inputs,
MRI images combined with CT, PET, and SPECT images
are employed to conduct typical multimodal medical image
fusion. The size of MRI and CT images are H × W × 1 ,
where H and W mean height and width, respectively, and
1 represents the number of channels contained in images.
Similarly, H × W × 3 is the size of PET and SPECT images.

In the fusion network of Fig. 3, we first feed source images
into the edge enhancement module to highlight edge textures
of fusion results. The structure of this module can retain the
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Fig. 3. Architecture of GeSeNet about our proposed method. (a) Pipeline of the edge enhancement module. (b) and (c) Detailed structure of RMG and
RMC in the training phase, respectively. (d) Pipeline of the region mask module. (e) Pipeline of the global refinement module. The bottom position shows
the legend of the proposed fusion network.

edge information of structural medical images to the greatest
extent. The extraction process can be formulated as follows:

E f = EConv + EG (1)

where E f , EConv, and EG means extracted features, the con-
volutional structure, and gradient filter used in the edge
enhancement module, respectively. After modification of the
edge enhancement module, the extracted features are then
input into the region mask module. We obtain marked “prin-
cipal” and “redundant” regions from this module, which can
reduce redundant computation and emphasize the representa-
tion of important features in the fusion process. The optimized
features M f by the region mask module from different
branches are concatenated, which is calculated as follows:

M f = Concatenate(Ma,Mb) (2)

where a and b represent the MRI branch and the
CT/PET/SPECT branch, respectively. In addition, the global
refinement module is initiated to revise features from different
modules. We can define this process as follows:

R f = RConv(Ea,M f ) (3)

where R f and RConv indicate the refined features and the
used convolutional layers in the global refinement module,
respectively.

After completing the fusion process, the initial fused images
are fed into a per-trained semantic module [39] to learn seman-
tic information. The semantic module optimizes high-level
and low-level feature maps simultaneously to capture more
accurate semantic information S f from fusion results. The
extraction process can be quantified as follows:

S f = S( fh, fl) (4)

where fh and fl , respectively, denote high-level and low-level
feature maps. Guided by a newly designed semantic loss,
the semantic module input the learned semantic information

into the former fusion network through back-propagation. Due
to the combination of semantic and edge-enhanced informa-
tion, the edge details of fusion results can be highlighted more
obviously.

When fusing RGB three-channel source images, that is, PET
and SPECT images, we convert them to YCbCr three-channel
form for fusion. Specifically, we first fuse the luminance
information in the Y channel with a single-channel MRI image
to generate a gray-scale fusion result. Owing to the content
features and details in the Y channel, the vital information
from source images can be retained substantially on fused
images. Then, the chrominance information on the Cb and Cr
channels are combined through a quantitative formula, which
the result is used as the color representation of the fused image

C f =
Cbi (|Cbi − τ |) + Cri (|Cri − τ |)

|Cbi − τ | + |Cri − τ |
(5)

where C f means the weighted sum result in fusion images.
Cbi and Cri are the chrominance values of each pixel in source
images. Inspired by previous works [40], [41], we also set the
hyperparameter τ to 128. At last, we fuse the result in the
Y channel with C f to obtain a YCbCr 3-channel result and
convert it into the RGB form.

B. Edge Enhancement Module

In multimodal medical image fusion, significant edge infor-
mation can make it easier for researchers and doctors to
conduct scientific research and pathological analysis [18].
In this case, we propose an edge enhancement module to
strengthen the edge representation of fused images, which
makes both qualitative performance and quantitative metrics
achieve a higher level.

As shown in Fig. 3(a), we were inspired by the structure of
the resblock [42] to design the edge enhancement module.
In the mainstream, two 3 × 3 convolutional layers with
dense connection mode and a 1 × 1 convolutional layer
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are employed to extract shallow feature maps EConv from
source images. We use the leaky rectified linear unit (LReLU)
as their activation function. In the residual stream, a novel
gradient filter is introduced for learning gradient information.
The gradient filter first deploys a 3 × 3 convolutional layer
with a Sobel operator in the horizontal direction to calculate
horizontal gradient magnitude. Similarly, we can get vertical
gradient magnitude from another 3 × 3 convolutional layer
and a vertical Sobel operator. Then, the gradient information
EG is fed into a 1 × 1 convolutional layer to remove dif-
ferences of channel dimensional. Furthermore, we implement
element-wise addition to merge EConv and EG to obtain the
final edge-enhanced features E f .

In addition, to prevent the proposed GeSeNet from forget-
ting learned edge information during training, we conduct a
skip connection operation on the CT/PET/SPECT branch to
connect with the latter convolutional layer. The edge-enhanced
features E f on the MRI branch are exploited in the global
refinement module to revise some details of fusion images,
which are given a detailed explanation in Section III-D.

C. Region Mask Module

Mask techniques are well used in many computer vision
tasks, for example, image super-resolution [43], target detec-
tion [44], and semantic segmentation [45]. To complete
the multimodal medical image fusion task more efficiently,
a region mask module is introduced in GeSeNet.

After integrating edge gradient features, the region mask
module in Fig. 3(d) is arranged to divide two different
regions for avoiding redundant computation and extracting
fine-grained details from source images. Due to the different
purposes between the training and testing phases, we manipu-
late corresponding structures of the region mask module that
contains a region mask generator (RMG) and four region
mask convolutions (RMCs) to learn and optimize features,
respectively.

1) Region Mask Generator: In the training phase, the spatial
and channel masks are employed to mark the “principal”
and “redundant” regions in RMG, respectively. As shown in
Fig. 3(b), the edge-enhanced features E f are first fed into a
3 × 3 convolutional layer with LReLU and average-pooling
layers. After modification by another 3 × 3 convolutional
layer with LReLU, we input the extracted feature maps into
a transposed convolution to obtain the upsampled feature E sp

f .
The learnable parameter from the transposed convolution can
be updated through back-propagation so that the upsampling
operation can be performed efficiently. To realize the spatial
mask self-regulating, Gumbel softmax distribution is intro-
duced to estimate a one-hot distribution [46], which can be
formulated as follows:

Msp =
exp

(
(E sp

f [1 × h × w] + Gsp[1 × h × w])/θ
)∑2

i=1 exp
(
(E sp

f [i × h × w] + Gsp[i × h × w])/θ
)

(6)

where h and w represent factors in the vertical and horizontal
directions, respectively. Gsp is an intermediate noise tensor in

Gumbel softmax, in which all elements obey Gumbel distri-
bution [R ∈ (0, 1)]. When θ tends to ∞, feature maps may
perform uniform distribution. Furthermore, when θ tends to 0,
one-hot distribution may appear. Owing to the constraint of the
range, θ as a hyperparameter is set to 0.5 for balance. To mark
“redundant” regions by the channel mask Mc, we randomly
initialize E f to Ec

f on Gaussian distribution [R ∈ (0, 1)] before
feeding into Gumbel softmax. Mc is defined as follows:

Mc =
exp

(
(Ec

f [1 × c] + Gc[1 × c])/θ
)∑2

i=1 exp
(
(Ec

f [i × c] + Gc[i × c])/θ
) (7)

where c means the number of channels.
During the testing phase, an Argmax layer is introduced

to substitute the Gumbel softmax to obtain spatial mask and
channel mask in Fig. 4(a). The Argmax layer can return the
corresponding index value of the maximum value in features.

2) Region Mask Convolution: To obtain the mask-optimized
feature M f , we input the extracted spatial mask and channel
mask into RMC as shown in Fig. 3(c). Specifically, we intro-
duce four RMC structures with dense connections. First, E f

separately performs element-wise multiplication with Mc and
1− Mc to get initial “principal” and “redundant” features, that
is, Mpr

f and Mre
f . In other words, we divide these features

into two distinct regions. Then, Mpr
f and Mre

f are fed into two
3 × 3 convolutional layers with shared weights to implement
element-wise multiplication with M ′

c, 1−M ′
c, and Msp. At last,

we integrate all the features from different regions to generate
the mask-optimized feature M f . Moreover, the gradient of
all features can be retained by Gumbel softmax to adjust the
kernel weights in RMC.

In the testing phase, we introduce sparse convolutional
layers to deal with the spatial and channel masks in
Fig. 4(b) and (c). Through Mc and M ′

c, the kernel of RMC
can get four split subkernels, that is, one 3 × 3 convolution
and three 3 × 3 sparse convolutions. With the action of
M ′

c, Mpr
f and Mre

f can be achieved. We employ the 3 × 3
convolution and the sparse convolution 1 with Msp to get Mp̃r

f

and Mr̃e
f . Meanwhile, M p̂r

f and Mr̂ e
f can be obtained as the

similar approach with sparse convolutions 2 and 3. Finally,
we use element-wise multiplication and concatenate operation
to generate M f .

As shown in Fig. 3(d), a channel attention module is
exploited to further modify the mask-optimized feature M f .
The selection of activate functions is LReLU and Sigmoid.
In the proposed fusion network, we concat M f from different
branches before the global refinement module.

D. Global Refinement Module

In the global refinement module, we first import M f

into two 3 × 3 convolutions to get global mask-optimized
features Mg

f . Then, the edge-enhanced features E f from the
MRI branch are concatenated with Mg

f for reserving the
former extracted information to refine the performance of
fusion results. Finally, we integrate all features to generate
the global-refined feature by utilizing element-wise addition,
which uses two 1 × 1 convolutional layers to remove channel
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Fig. 4. Structure of the region mask module in the testing phase: (a) pipeline of RMG, (b) and (c) pipeline of RMC with sparse convolution. Instead of
using the shared weight strategy in the training phase, the split manipulation is deployed in RMC during the testing phase.

dimensional diversities. The refinement process can be quan-
tified as follows:

R
(
E f

∣∣Mg
f ,M f

)
= E f ⊙Mg

f +M f (8)

where ⊙ indicates the concatenate operation. In addition,
to make fusion results vivid in color and retain more functional
details, a skip connection is introduced to connect the edge
enhancement module in the CT/PET/SPECT branch with the
3 × 3 convolution behind the global refinement module.

E. Loss Function

To ensure the quality of fusion images by persisting more
meaningful extracted information, the loss function of our
proposed method consists of three parts, which contain the
edge loss LE , the structure similarity index measure loss LSSIM
and the semantic loss LS . The total loss Ltotal is defined as
follows:

Ltotal = LE + αLSSIM + βLS (9)

where α and β are tradeoff hyperparameters to balance the
values of Ltotal.

1) Edge Loss: During the training phase, the edge loss can
guide source images to generate a fused image that highlights
content performance and gradient information. Therefore,
we divide the edge loss into two parts, which can be described
as follows:

LE = Lc + γLg (10)

where Lc and Lg denote the content and gradient loss,
respectively. γ is a hyperparameter for controlling the value
of Lg .

In the content loss, we employ the l1-norm to measure the
difference between generated outputs IF and source images.
Lc is formulated as follows:

Lc =
1

HF · WF
· ∥IF − max(Ia, Ib)∥1 (11)

where HF and WF represent the height and width of IF ,
respectively. max(∗) and ∥ ∗ ∥1 mean the maximum selection
strategy and l1-norm, respectively. According to the content
loss, the pixel-level contact information is transferred to our
proposed network for image fusion.

We expect to retain more edge textures while delivering the
content information. Hence, the gradient loss is proposed to

measure the value of the gradient in the pixel domain, which
can be calculated as follows:

Lg =
1

HF · WF
·
∥∥|▽IF | − max(|▽Ia|, |▽Ib|)

∥∥
1 (12)

where ▽ denotes the Sobel operator to calculate the value
of the gradient. Since negative gradients are not available,
absolute value operation | ∗ | is introduced to solve this
problem.

2) Structure Similarity Index Measure Loss: LSSIM can
measure the structural difference by structural similarity index
measure (SSIM) [47], which contains three kinds of infor-
mation, that is, luminance, structure, and contrast. We can
specifically express LSSIM as follows:

LSSIM = (1 − SSIM(IF , Ia)) + (1 − SSIM(IF , Ib)). (13)

Moreover, SSIM(IF , I∗) is defined as follows:∑
IF ,I∗

2µIF µI∗ + C1

µ2
IF

+ µ2
I∗ + C1

·
2σIF σI∗ + C2

σ 2
IF

+ σ 2
I∗ + C2

·
σIF I∗ + C3

σIF σI∗ + C3
(14)

where I∗ indicates the source image Ia or Ib. µ and σ mean
the average value and standard deviation (SD), respectively.
C1, C2, and C3 are constants for steadying the indicator.

3) Semantic Loss: The semantic loss is introduced to feed
semantic information from source images into fusion results.
Inspired by the previous work [39], we separate the semantic
loss into the main semantic loss Lmain and the subsidiary
semantic loss Lsub, which can be shown as follows:

LS = Lmain + δLsub (15)

where δ can keep the value of LS stable. Furthermore, the
main semantic loss and the subsidiary semantic loss can be,
respectively, defined as follows:

Lmain = −
1

HF · WF

H∑
h=1

W∑
w=1

C∑
c=1

(Io · ln Smain) (16)

Lsub = −
1

HF · WF

H∑
h=1

W∑
w=1

C∑
c=1

(Io · ln Ssub) (17)

where Io denotes a one-hot distribution generated by extracted
semantic features. Smain and Ssub mean the main semantic and
the subsidiary semantic information, respectively.
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Fig. 5. Qualitative comparison results of our GeSeNet with nine state-of-the-art methods on three MRI and CT image pairs. MLEPF [48] is introduced to replace
DDcGAN [49] for MRI-CT fusion. Two enlarged detail patches are shown on the right of each result. Noticeably, our method can obtain well-performance
results that contain abundant structural information.

IV. EXPERIMENT

In this section, we first give the specific experimental
details, qualitative comparison approaches, and quantita-
tive evaluation metrics. Second, MRI-CT, MRI-PET, and
MRI-SPECT comparison results are shown to demon-
strate the superiority of GeSeNet. In addition, we com-
pare the time efficiency and parameter quantity of each
method. Finally, ablation experiments are conducted to val-
idate the effectiveness of the devised modules and loss
functions.

A. Experimental Details

The training and test datasets of our proposed method are
selected on the Harvard medical dataset, which can be publicly
available at http://www.med.harvard.edu/AANLIB/home.html.
Specifically, we choose 150 image pairs from MRI-CT,
MRI-PET, and MRI-SPECT images and crop them into
patches with size 24 × 24 to treat as the training dataset.
Twenty-one pairs of MRI-CT images, 42 pairs of MRI-
PET images, and 73 pairs of MRI-SPECT images which
can typically highlight different characteristics are regarded
as test datasets to complete different medical image fusion
tasks. Note that the experimental setup of three differ-
ent modalities keeps uniform in the training and testing
phases.

During training, the Adam optimizer is employed with the
stride of 8, the batch size of 4, the original learning rate
of 1e-3, and the weight decay of 2e-4 to train the proposed
fusion network. In the semantic module, we use stochastic
gradient descent with a batch size of 4, a momentum of 0.9,
and a weight decay of 5e-4 to obtain semantic information
after training the fusion processing. The epoch is set to 500.
The used convolutions and activate functions in the proposed
method are performed in the legend of Fig. 3. To calculate the
value of the loss function easily, we preset hyperparameters
γ and δ to 10 and 0.5, respectively. According to previous
works [50], [51], α is set to 0.5. Furthermore, we set β to
0.3 for balancing the extracted information between the fusion
network and the semantic module. The detailed experiment is
described in Section IV-G. All experiments are deployed in
the PyTorch framework with a PC, which has an NVIDIA
GeForce RTX 3060 GPU, a 16-GB RAM memory, and an
Intel Core i5-11400F CPU.

B. Comparison Approaches and Evaluation Metrics

1) Comparison Approaches: We compare our proposed
methods with ten state-of-the-art methods, which contain
one traditional method, that is, CSMCA [16], two PCNN-
based methods, that is, NSST-PAPCNN [1] and MLEPF [48],
and seven deep-learning-based methods, that is, CNN [32],
DDcGAN [49], IFCNN [34], U2Fusion [12], PMGI [52],
SDNet [53], and EMFusion [13]. It is worth noting that
DDcGAN is proposed to fuse structural images with functional
images so that we introduce MLEPF for MRI-CT fusion
instead. Moreover, the comparison approaches are all publicly
available and we set the same parameters as the original papers
during the testing phase.

2) Evaluation Metrics: To quantify the merits of our fusion
results, we select six quantitative evaluation metrics, that
is, SSIM [47], SD, mutual information (MI) [54], visual
information fidelity (VIF) [55], the sum of the correlations
of differences (SCDs) [56], and edge-based similarity mea-
sure (Qab/ f ) [57] to compare with other ten state-of-the-art
methods. Specifically, SSIM is a unified metric that is used
to measure the similarity of two images. The measured infor-
mation is luminance, structure, and contrast. In other words,
the higher the value of SSIM, the more similar the two
images are. SD can represent the degree of offset between the
pixel value and the average pixel value of the image. From
a statistical view, SD means the distribution and contrast of
images. Based on the knowledge of information theory, MI can
calculate the amount of information interaction from source
images to the fused image. Generally, a larger value of MI
symbolizes that the fused result has a better performance. VIF
quantifies the information fidelity of visual perception, which
is consistent with the human visual system. By building a
complex model, we calculate the degree of distortion between
the source images and the fused image to get the VIF. A large
VIF indicates a high level of information fidelity. SCD targets
to measure the differences between source images and the
fusion image in each pixel. A high score in SCD represents
an excellent fusion result. Qab/ f aims to calculate the total
edge information which is transferred from source images to
the output.

C. MRI-CT Comparison Results

1) Qualitative Analysis: As shown in Fig. 5, we perform
three typical sets of MRI-CT fusion results to compare our
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TABLE I
QUANTITATIVE COMPARISON OF OUR GESENET WITH OTHER NINE METHODS ON THE MRI-CT TEST DATASET. THE BEST AVERAGE VALUE AND SD

ARE MARKED IN RED WITH BOLD FONT AND THE SECOND ONES ARE BOLDED IN BLUE, RESPECTIVELY

Fig. 6. Qualitative comparison results of our GeSeNet with nine state-of-the-art methods on three MRI and PET image pairs. The two magnified details are
marked by green and purple boxes and shown to the right of each fusion result. Clearly, our fusion results are superior in both local details and global effects,
for example, the blood flow information in the third row.

qualitative performance with the other nine state-of-the-art
methods. Due to the limitations of fusion strategies, the
skeleton information is unable to be visibly exhibited in the
results of CSMCA, U2Fusion, and SDNet. IFCNN effectively
extracts features of MRI and CT source images and generates a
fusion image with rich texture details. However, the luminance
of the results looks dimmer than our fusion results. PMGI
cannot balance the contrast of fusion results, which is difficult
for researchers and physicians to distinguish the different
information represented in the fusion results. The structure of
MLEPF is insensitive to edge features and detail information
so that the generated images occur some distortions. In the
third row, CNNs can perform visually vivid fused images,
but the expressed synaptic information is slightly inferior
compared to our fusion results. Though the overall visual
effect and information retention of CNN and EMFusion are
multiply shown in their fusion images, there also appear some
artifact halos. Moreover, when CT images are less informative
(e.g., in the second row), our network can retain more features
from MRI images to optimize the quality of fusion results.
We attribute this advantage to the region mask module.

2) Quantitative Analysis: For a more comprehensive com-
parison, we give the six aforementioned evaluation indicators
in Table I. Our fusion results achieve the best marks on SD
and Qab/ f , and the second best on SSIM, MI, VIF, and SCD.
From the quantitative indexes, the higher SD value indicates
that our generated results can stay more stable existence at the
pixel level. Owing to devising the edge enhancement module,
fused results are sensitive to the performance of edge details,
and the value of Qab/ f can get the best grade. In the MRI-
CT test dataset, structural information contained in some CT

images (e.g., the first and second rows in Fig. 5) is not obvious
to capture. Unlike other methods, our proposed GeSeNet
introduces the region mask module to mark “principle” regions
and extract more features from MRI images for guaranteeing
the quality of the fused results. This is why our method is
suboptimal on some metrics. As a result, the proposed method
keeps the quantitative indicators in an excellent position while
ensuring the visual effect of the fused images.

D. MRI-PET Comparison Results

1) Qualitative Analysis: We conduct a subjective qualitative
comparison of MRI-PET fusion in Fig. 6. It is evident that
our fusion results not only highlight different characteristics
of MRI and PET source images, but also show faithful color
representation. DDcGAN is a method developed based on
GAN, so that unstable blurring artifacts may appear in the
fusion results. As a unified fusion framework, PMGI may
occur an unbalanced weight distribution ratio during fusing
medical images, which leads to the vital information in source
images cannot be completely transmitted to the corresponding
generated results. The results of U2Fusion perform weaker
information extraction and color realization compared with
GeSeNet. CSMCA and SDNet are better than U2Fusion in
color representation, however, the texture details on MRI
images are still preserved poorly in their fusion results. Though
EMFusion can extract more MRI information, the performance
of color is distorted in fused results. For other comparison
methods, GeSeNet outperforms in both edge preservation and
texture rendering, which can emphasize soft-tissue structure
and functional information simultaneously.
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Fig. 7. Quantitative comparison of our GeSeNet with other nine methods
on the MRI-PET test dataset. The green triangles in each rectangle represent
the mean value of different methods.

2) Quantitative Analysis: Fig. 7 shows mean value (repre-
sented by green triangles in each rectangle), SD (represented
by rectangle length), median number (represented by orange
lines in each rectangle), and fluctuation range (represented
by the total length of the line) of six evaluation metrics
on the MRI-PET test dataset. From the statistical results,
it can be seen that the results generated by our method
achieve the largest averages on SD, MI, VIF, and Qab/ f ,
which denotes that the proposed method transfers more useful
information from source images and performs more abundant
texture details to researchers. For the metrics SSIM and SCD,
the average value of our fusion results obtains the second
best score. Specifically, the SSIM and SCD mean values not
reaching the highest level does not mean that our fusion results
are of poor quality. Due to the labeling of different regions and
the targeted extraction of features, the generated fusion images
may miss some minor information and reduce the performance
of some quantitative indicators.

E. MRI-SPECT Comparison Results

1) Qualitative Analysis: Quantitative comparison results
about the MRI-SPECT fusion task are shown in Fig. 8. Similar
to MRI-PET fusion, our method also exhibits vivid colors and
rich texture details on the MRI-SPECT task. In the second
row, the proposed network transfers the structural information
from MRI well into the fused images, while also attaching
the functional information from SPECT images to the fusion

results. It can ensure that detailed features are not covered by
the chrominance information. At the green patch in the third
row, we can clearly observe that when there are two kinds
of different information at the same position, our method can
realize that the two kinds of information exist on a fused image
at the same time.

2) Quantitative Analysis: As shown in Fig. 9, we present
quantitative comparison results in the form of scatter plots.
The horizontal and vertical coordinates in Fig. 9 separately
represent the six evaluation indicators. Since the selected
indicators are all positively correlated, the farther the marked
point is from the axis, the better its performance. Apparently,
the value of SD, SSIM, MI, SCD, and Qab/ f achieve the
highest score compared with other methods, which indicates
that the proposed GeSeNet has outstanding performance on
similarity preservation and information transfer. The value
of VIF is slightly lower than CNNs and gets a suboptimal
score. However, it does not affect the quality of our fusion
result. In color performance, our proposed method outperforms
CNNs.

F. Efficiency Comparison

In addition to comparing qualitative and quantitative results
generated by the models, the time efficiency and size of
the models are also critical indicators to evaluate the quality
of the proposed method. As shown in Table II, we per-
form the average runtime of three tasks (i.e., MRI-CT,
MRI-PET, and MRI-SPECT) and parameter quantity of the
above-mentioned comparison methods. The traditional and
PCNN-based methods are all operated with MATLAB on
an i5-11400F CPU. Besides CNN running on CPU, other
deep-learning-based methods are performed with Tensor-
flow/PyTorch on an NVIDIA GeForce RTX 3060 GPU.

In terms of runtime, our proposed method achieves the
shortest time on the test dataset. Due to the end-to-end
structure, the proposed method can reduce the tediousness of
manually regulating the fusion strategy. Moreover, we design
the corresponding architecture and network of our proposed
method to extract and fuse more efficiently through the essence
of multimodal medical images, which can avoid running
inefficiencies caused by directly adding convolutional layers.
On hardware systems, methods running on GPUs tend to
run more efficiently than CPUs. The parameter size of the
proposed method stands intermediate level. Owing to the
framework of the region mask module, the “principal” and
“redundant” regions are divided to focus on learning important
information while ignoring redundant information. Though the
space complexity of our proposed method is not the best,
the time efficiency and the fusion quality perform excellently
above these mentioned methods.

G. Ablation Experiments

1) Analysis on Different Modules: We analyze the model
architecture of the proposed network and sequentially verify
the effectiveness of each module in our approach. To sim-
plify the analysis process, the whole network is divided into
three main parts, that is, E , M, and R, which means the
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Fig. 8. Qualitative comparison results of our GeSeNet with nine state-of-the-art methods on three MRI and SPECT image pairs. The two magnified details
are marked by green and purple boxes and shown to the right of each fusion result. We can clearly observe that the proposed method performs more vividly
than other compared methods, for example, the bone junction in the third row.

Fig. 9. Quantitative comparison of our proposed method with other nine methods on MRI-SPECT test dataset. Our method is in a leading position.

TABLE II
AVERAGE RUNTIME (UNIT: SECOND) AND PARAMETER SIZE (UNIT: MB) OF DIFFERENT METHODS. CNN, TRADITIONAL,

AND PCNN-BASED METHODS ARE PERFORMED ON CPU, WHILE OTHER METHODS ARE CONDUCTED ON GPU

edge enhancement module, the region mask module, and the
global refinement module, respectively. As shown in Fig. 10,
we present qualitative results of the proposed network with
or without each mentioned module. It is worth noting that the
introduction of any module in the network has a good effect on
the quality of the generated results. In detail, the fused results
may appear blur edge and detail absence without E . In the
MRI-CT fusion results, it is not difficult to observe that the full
model can obtain more edge details than the model without E .
Hence, it shows that E is sensitive to edge information in the
network. M can distinguish valid and invalid information for
more targeted capture features. Some useless information (e.g.,
patch enlarged in green box of the MRI-SPECT result) may
occur in the fused images to affect the overall visual effect
without M. The full model divides different regions with the
help of M to focus on extracting important features while

reducing the reuse of redundant information. R plays a role
in modifying the overall performance of results. As shown
in the MRI-PET result, it fails to reserve texture details
and global perception without R. In addition to qualitative
analysis, we conduct three sets of quantitative comparisons
about with or without each module in Table III. By integrating
different modules into our method, the full model leads
the way in quantitative metrics. As a result, each module
contributes positively to the final performance of the fused
image. Moreover, Fig. 11 shows the visual illustrations of the
region mask module, which can prove that it can accurately
mark “principal” regions in different features.

2) Analysis on Module Location: The visual effect of the
fused images is also related to the location of the employed
modules. As the global refinement module targets to inte-
grate the former extracted features, we only exchange the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on November 27,2023 at 08:11:40 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: GeSeNet: A GENERAL SEMANTIC-GUIDED NETWORK WITH COUPLE MASK ENSEMBLE 11

TABLE III
ABLATION QUANTITATIVE EXPERIMENT OF EACH MODULE. THE OPTIMAL AND SUBOPTIMAL RESULTS ARE BOLDED AND

MARKED IN RED AND BLUE, RESPECTIVELY

TABLE IV
ABLATION QUANTITATIVE EXPERIMENT OF LOSS FUNCTIONS. WE BOLD OPTIMAL AND SUBOPTIMAL RESULTS IN RED AND BLUE, RESPECTIVELY

Fig. 10. Ablation qualitative experiment of each module on three kinds
of image pairs, that is, MRI-CT, MRI-PET, and MRI-SPECT images. Each
module plays an active role in GeSeNet.

Fig. 11. (a)–(d) Visual illustrations of MRI and CT images from the
edge enhancement module to the region mask module. The red areas mean
“principal” regions. After passing through the region mask module, “principal”
features are learned while these features will no longer be learned in the
subsequent process.

location of the edge enhancement module and the region
mask module to verify the effect of location on fusion
results. The generated results after swapping positions and
the corresponding enlarged details are shown in Fig. 12(a).

Fig. 12. Ablation qualitative experiment of module position and w/o skip
connection operation. Obviously, our generated images contain more texture
details and chrominance information. (a) Position exchange, (b) w/o skip
connection, and (c) ours.

We can obviously notice that the results present the blur edge
details and distorted color. Due to missing edge optimization
operations, the region mask module may mistake the edge
information as redundant information to prevent the network
from recomputing it. Hence, we should use the edge enhance-
ment module to learn edge features first and then deploy the
region mask module to mark different regions. Furthermore,
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Fig. 13. Ablation qualitative experiment of loss functions. From left to right:
(a) results without the edge loss function, (b) results without the semantic loss
function, and (c) results with the proposed loss function.

the skip connection operation (referred to as S) from the
edge enhancement module to the latter convolution also affects
the fusion results on the CT/PET/SPECT branch. With S,
we can achieve well-performed fused images, which contain
the substantial former learned information. The quantitative
results are shown in Fig. 12(b).

3) Analysis on the Loss Function: In Fig. 13, we demon-
strate qualitative results of using different combinations of loss
functions to train the proposed network. It is easy to find that
the results may miss some significant edge details (e.g., the
junction of bone and soft tissue in the MRI-CT task) without
the edge loss LE . As a consequence, LE has a prominent
advantage for edge detail enhancement. When the semantic
loss LS is removed during training, the semantic information
may reduce on fusion images. As shown in Fig. 13(b),
undesirable halos are evidently revealed and the performance
of color emerges with slight distortion. After integrating all
proposed loss functions, we can obtain a fusion result with
abundant edge details and semantic information, which helps
researchers to understand image contents more conveniently.
We give the results of quantitative analysis in Table IV to
further verify the effectiveness of each loss function in our
proposed method. Evaluation metrics perform well on three
fusion tasks, implying that our proposed edge and semantic
loss functions are efficient in retaining details and equalizing
pixel distribution.

V. CONCLUSION

In this article, a novel flexible mask-optimized network
guided with a semantic model in an end-to-end manner is
proposed to conduct the multimodal medical image fusion
task, which is named as GeSeNet. Using the edge enhancement
module and the corresponding edge loss function, the edge
textures of fusion results can be more clear. The region mask

module performs improved extraction and skips redundancy
operations on different regions after division, while using
the global refinement module to modify extracted global
features. Furthermore, we employ the semantic module and
a newly designed loss function to transfer more semantic
information for boosting the quality of fused images. Sufficient
experiments show that the proposed GeSeNet model can
generate vivid fusion results in visual perception while also
guaranteeing the performance of quantitative metrics. There-
fore, our proposed method contributes to the development of
multimodal medical image fusion. In future works, we will
apply the results of multimodal medical image fusion to
medical image segmentation and classification, which enables
researchers and doctors to judge the disease more accurately.

REFERENCES

[1] M. Yin, X. Liu, Y. Liu, and X. Chen, “Medical image fusion with
parameter-adaptive pulse coupled neural network in nonsubsampled
shearlet transform domain,” IEEE Trans. Instrum. Meas., vol. 68, no. 1,
pp. 49–64, Jan. 2019.

[2] S. Daneshvar and H. Ghassemian, “MRI and PET image fusion by
combining IHS and retina-inspired models,” Inf. Fusion, vol. 11, no. 2,
pp. 114–123, Apr. 2010.

[3] W. Li, X. Peng, J. Fu, G. Wang, Y. Huang, and F. Chao, “A multi-
scale double-branch residual attention network for anatomical–functional
medical image fusion,” Comput. Biol. Med., vol. 141, Feb. 2022,
Art. no. 105005.

[4] B. Huang, F. Yang, M. Yin, X. Mo, and C. Zhong, “A review of
multimodal medical image fusion techniques,” Comput. Math. Methods
Med., vol. 2020, pp. 1–16, Apr. 2020.

[5] W. Tan et al., “Multimodal medical image fusion algorithm in the era
of big data,” Neural Comput. Appl., 2020, doi: 10.1007/s00521-020-
05173-2.

[6] K. He, X. Zhang, D. Xu, J. Gong, and L. Xie, “Fidelity-driven
optimization reconstruction and details preserving guided fusion for
multi-modality medical image,” IEEE Trans. Multimedia, early access,
Jun. 23, 2022, doi: 10.1109/TMM.2022.3185887.

[7] H. Zhou, W. Wu, Y. Zhang, J. Ma, and H. Ling, “Semantic-supervised
infrared and visible image fusion via a dual-discriminator generative
adversarial network,” IEEE Trans. Multimedia, vol. 25, pp. 635–648,
2023.

[8] J. Li, H. Huo, C. Li, R. Wang, and Q. Feng, “AttentionFGAN: Infrared
and visible image fusion using attention-based generative adversarial
networks,” IEEE Trans. Multimedia, vol. 23, pp. 1383–1396, 2021.

[9] Y. Liu, S. Liu, and Z. Wang, “A general framework for image fusion
based on multi-scale transform and sparse representation,” Inf. Fusion,
vol. 24, pp. 147–164, Jul. 2015.

[10] P. Ganasala and A. D. Prasad, “Medical image fusion based on laws of
texture energy measures in stationary wavelet transform domain,” Int. J.
Imag. Syst. Technol., vol. 30, no. 3, pp. 544–557, Sep. 2020.

[11] H. Zhang, H. Xu, X. Tian, J. Jiang, and J. Ma, “Image fusion meets deep
learning: A survey and perspective,” Inf. Fusion, vol. 76, pp. 323–336,
Dec. 2021.

[12] H. Xu, J. Ma, J. Jiang, X. Guo, and H. Ling, “U2Fusion: A unified
unsupervised image fusion network,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 44, no. 1, pp. 502–518, Jan. 2022.

[13] H. Xu and J. Ma, “EMFusion: An unsupervised enhanced medical image
fusion network,” Inf. Fusion, vol. 76, pp. 177–186, Dec. 2021.

[14] Y. Yang, D. S. Park, S. Huang, and N. Rao, “Medical image fusion via
an effective wavelet-based approach,” EURASIP J. Adv. Signal Process.,
vol. 2010, no. 1, pp. 1–13, Dec. 2010.

[15] J. Du, W. Li, B. Xiao, and Q. Nawaz, “Union Laplacian pyramid with
multiple features for medical image fusion,” Neurocomputing, vol. 194,
pp. 326–339, Jun. 2016.

[16] Y. Liu, X. Chen, R. K. Ward, and Z. J. Wang, “Medical image fusion via
convolutional sparsity based morphological component analysis,” IEEE
Signal Process. Lett., vol. 26, no. 3, pp. 485–489, Mar. 2019.

[17] Z. Wang, Z. Cui, and Y. Zhu, “Multi-modal medical image fusion by
Laplacian pyramid and adaptive sparse representation,” Comput. Biol.
Med., vol. 123, Aug. 2020, Art. no. 103823.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on November 27,2023 at 08:11:40 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1007/s00521-020-05173-2
http://dx.doi.org/10.1007/s00521-020-05173-2
http://dx.doi.org/10.1109/TMM.2022.3185887


LI et al.: GeSeNet: A GENERAL SEMANTIC-GUIDED NETWORK WITH COUPLE MASK ENSEMBLE 13

[18] J. Du, W. Li, K. Lu, and B. Xiao, “An overview of multi-modal medical
image fusion,” Neurocomputing, vol. 215, pp. 3–20, Nov. 2016.

[19] R. Singh, M. Vatsa, and A. Noore, “Multimodal medical image fusion
using redundant discrete wavelet transform,” in Proc. 7th Int. Conf. Adv.
Pattern Recognit., Feb. 2009, pp. 232–235.

[20] O. Prakash and A. Khare, “CT and MR images fusion based on
stationary wavelet transform by modulus maxima,” in Computational
Vision and Robotics: Proceedings of ICCVR 2014. India: Springer, 2015,
pp. 199–204.

[21] W. Xue-jun and M. Ying, “A medical image fusion algorithm based
on lifting wavelet transform,” in Proc. Int. Conf. Artif. Intell. Comput.
Intell., vol. 3, Oct. 2010, pp. 474–476.

[22] S. Cheng, J. He, and Z. Lv, “Medical image of PET/CT weighted fusion
based on wavelet transform,” in Proc. 2nd Int. Conf. Bioinf. Biomed.
Eng., May 2008, pp. 2523–2525.

[23] V. Bhavana and H. K. Krishnappa, “Multi-modality medical image
fusion using discrete wavelet transform,” Proc. Comput. Sci., vol. 70,
pp. 625–631, Jan. 2015.

[24] A. Sahu, V. Bhateja, A. Krishn, and H. Patel, “Medical image fusion
with Laplacian pyramids,” in Proc. Int. Conf. Med. Imag., m-Health
Emerg. Commun. Syst. (MedCom), Nov. 2014, pp. 448–453.

[25] C. He, Q. Liu, H. Li, and H. Wang, “Multimodal medical image
fusion based on IHS and PCA,” Proc. Eng., vol. 7, pp. 280–285,
Jan. 2010.

[26] A. Krishn, V. Bhateja, H. Patel, and A. Sahu, “Medical image fusion
using combination of PCA and wavelet analysis,” in Proc. Int. Conf.
Adv. Comput., Commun. Informat. (ICACCI), Sep. 2014, pp. 986–991.

[27] Y. Zhu, J. Cheng, Z. Cui, Q. Zhu, L. Ying, and D. Liang, “Physics-
driven deep learning methods for fast quantitative magnetic resonance
imaging: Performance improvements through integration with deep neu-
ral networks,” IEEE Signal Process. Mag., vol. 40, no. 2, pp. 116–128,
Mar. 2023.

[28] P. Liu, J. Liu, and L. Xiao, “A unified pansharpening method with struc-
ture tensor driven spatial consistency and deep plug-and-play priors,”
IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5413314.

[29] J. Yang, L. Xiao, Y. Zhao, and J. C. Chan, “Variational regulariza-
tion network with attentive deep prior for hyperspectral–multispectral
image fusion,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5508817.

[30] B. Wen, S. Ravishankar, L. Pfister, and Y. Bresler, “Transform learning
for magnetic resonance image reconstruction: From model-based learn-
ing to building neural networks,” IEEE Signal Process. Mag., vol. 37,
no. 1, pp. 41–53, Jan. 2020.

[31] S. Singh and R. S. Anand, “Multimodal medical image fusion using
hybrid layer decomposition with CNN-based feature mapping and
structural clustering,” IEEE Trans. Instrum. Meas., vol. 69, no. 6,
pp. 3855–3865, Jun. 2020.

[32] Y. Liu, X. Chen, J. Cheng, and H. Peng, “A medical image fusion method
based on convolutional neural networks,” in Proc. 20th Int. Conf. Inf.
Fusion (Fusion), Jul. 2017, pp. 1–7.

[33] X. Song, X. J. Wu, and H. Li, “MSDNet for medical image fusion,” in
Image and Graphics: 10th International Conference, ICIG 2019, Beijing,
China, August 23–25, 2019, Proceedings, Part II 10. Springer, 2019,
pp. 278–288.

[34] Y. Zhang, Y. Liu, P. Sun, H. Yan, X. Zhao, and L. Zhang, “IFCNN: A
general image fusion framework based on convolutional neural network,”
Inf. Fusion, vol. 54, pp. 99–118, Feb. 2020.

[35] R. Liu, J. Liu, Z. Jiang, X. Fan, and Z. Luo, “A bilevel integrated model
with data-driven layer ensemble for multi-modality image fusion,” IEEE
Trans. Image Process., vol. 30, pp. 1261–1274, 2021.

[36] Z. Wang and Y. Ma, “Medical image fusion using m-PCNN,” Inf. Fusion,
vol. 9, no. 2, pp. 176–185, Apr. 2008.

[37] X. Xu, D. Shan, G. Wang, and X. Jiang, “Multimodal medical image
fusion using PCNN optimized by the QPSO algorithm,” Appl. Soft
Comput., vol. 46, pp. 588–595, Sep. 2016.

[38] P. Ganasala and V. Kumar, “Feature-motivated simplified adaptive
PCNN-based medical image fusion algorithm in NSST domain,” J. Digit.
Imag., vol. 29, no. 1, pp. 73–85, Feb. 2016.

[39] C. Peng, T. Tian, C. Chen, X. Guo, and J. Ma, “Bilateral attention
decoder: A lightweight decoder for real-time semantic segmentation,”
Neural Netw., vol. 137, pp. 188–199, May 2021.

[40] J. Liu, J. Shang, R. Liu, and X. Fan, “Attention-guided global-local
adversarial learning for detail-preserving multi-exposure image fusion,”
IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 8, pp. 5026–5040,
Aug. 2022.

[41] J. Liu et al., “Target-aware dual adversarial learning and a multi-
scenario multi-modality benchmark to fuse infrared and visible for object
detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 5802–5811.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[43] L. Wang et al., “Exploring sparsity in image super-resolution for efficient
inference,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 4917–4926.

[44] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2961–2969.

[45] W. Van Gansbeke, S. Vandenhende, S. Georgoulis, and L. Van Gool,
“Unsupervised semantic segmentation by contrasting object mask pro-
posals,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 10052–10062.

[46] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
Gumbel–Softmax,” 2016, arXiv:1611.01144.

[47] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[48] W. Tan, W. Thitøn, P. Xiang, and H. Zhou, “Multi-modal brain image
fusion based on multi-level edge-preserving filtering,” Biomed. Signal
Process. Control, vol. 64, Feb. 2021, Art. no. 102280.

[49] J. Ma, H. Xu, J. Jiang, X. Mei, and X.-P. Zhang, “DDcGAN:
A dual-discriminator conditional generative adversarial network for
multi-resolution image fusion,” IEEE Trans. Image Process., vol. 29,
pp. 4980–4995, 2020.

[50] J. Liu, X. Fan, J. Jiang, R. Liu, and Z. Luo, “Learning a deep multi-
scale feature ensemble and an edge-attention guidance for image fusion,”
IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 1, pp. 105–119,
Jan. 2022.

[51] H. Li and X. Wu, “DenseFuse: A fusion approach to infrared and visible
images,” IEEE Trans. Image Process., vol. 28, no. 5, pp. 2614–2623,
May 2019.

[52] H. Zhang, H. Xu, Y. Xiao, X. Guo, and J. Ma, “Rethinking the image
fusion: A fast unified image fusion network based on proportional
maintenance of gradient and intensity,” in Proc. AAAI Conf. Artif. Intell.,
vol. 34, 2020, pp. 12797–12804.

[53] H. Zhang and J. Ma, “SDNet: A versatile squeeze-and-decomposition
network for real-time image fusion,” Int. J. Comput. Vis., vol. 129,
no. 10, pp. 2761–2785, Oct. 2021.

[54] G. Qu, D. Zhang, and P. Yan, “Information measure for performance of
image fusion,” Electron. Lett., vol. 38, no. 7, p. 313, 2002.

[55] Y. Han, Y. Cai, Y. Cao, and X. Xu, “A new image fusion performance
metric based on visual information fidelity,” Inf. Fusion, vol. 14, no. 2,
pp. 127–135, Apr. 2013.

[56] V. Aslantas and E. Bendes, “A new image quality metric for image
fusion: The sum of the correlations of differences,” AEU, Int. J. Electron.
Commun., vol. 69, no. 12, pp. 1890–1896, Dec. 2015.

[57] C. S. Xydeas and V. Petrović, “Objective image fusion performance
measure,” Electron. Lett., vol. 36, no. 4, pp. 308–309, 2000.

Jiawei Li received the M.S. degree in software
engineering from Dalian University, Dalian, China,
in 2023.

His current research interests include deep learning
and image processing.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on November 27,2023 at 08:11:40 UTC from IEEE Xplore.  Restrictions apply. 



14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Jinyuan Liu (Member, IEEE) received the Ph.D.
degree in software engineering from the Dalian
University of Technology, Dalian, China, in 2022.

He is currently an Assistant Research Fellow
with the School of Mechanical Engineering, Dalian
University of Technology. His research interests
include computer vision, image processing, and deep
learning.

Shihua Zhou (Member, IEEE) was born in Dalian,
China, in 1982. She received the Ph.D. degree in
mechanical design and theory from the Dalian Uni-
versity of Technology, Dalian, in 2013.

Since 2013, she has been with Dalian University,
Dalian, where she is currently an Associate Profes-
sor with the Key Laboratory of Advanced Design
and Intelligent Computing, Ministry of Education,
School of Software Engineering. She has authored
more than 50 articles. Her research interests include
deoxyribonucleic acid (DNA) computing, DNA self-

assembly, image encryption, and image fusion.

Qiang Zhang (Senior Member, IEEE) received the
B.S. degree in electronic engineering and the M.S.
and Ph.D. degrees in circuits and systems from the
School of Electronic Engineering, Xidian University,
Xi’an, China, in 1994, 1999, and 2002, respectively.

He is currently the Dean and a Professor with
the College of Computer Science and Technology,
Dalian University of Technology, Dalian, China. His
research interests are artificial intelligence, neural
networks, DNA computing, and optimization and
intelligent robots.

Nikola K. Kasabov (Life Fellow, IEEE) received
the Ph.D. degree from the Technical University of
Sofia, Sofia, Bulgaria, in 1975.

He is the Founding Director of Knowledge Engi-
neering and Discovery Research Institute (KEDRI),
Auckland, New Zealand, and a Professor of Knowl-
edge Engineering with the School of Engineering,
Computing and Mathematical Sciences, Auckland
University of Technology, Auckland. He holds the
Professorial Chair position with the University of
Ulster, Londonderry, U.K., and a Visiting Profes-

sorship with the IICT, Bulgarian Academy of Sciences, Sofia, and Dalian
University, Dalian, China. He has authored more than 700 articles. His
research areas are computational intelligence, neuroinformatics, knowledge
discovery, and spiking neural networks.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on November 27,2023 at 08:11:40 UTC from IEEE Xplore.  Restrictions apply. 


