
Neural Networks 41 (2013) 188–201
Contents lists available at SciVerse ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2013 Special Issue

Dynamic evolving spiking neural networks for on-line spatio- and
spectro-temporal pattern recognition
Nikola Kasabov a,b,c,∗, Kshitij Dhoble a, Nuttapod Nuntalid a, Giacomo Indiveri b,c
a Knowledge Engineering & Discovery Research Institute (KEDRI), Auckland University of Technology, New Zealand
b Institute of Neuroinformatics (INI), University of Zurich, Switzerland
c ETH Zurich, Switzerland

a r t i c l e i n f o

Keywords:
Spatio-temporal pattern recognition
Spiking neural networks
Dynamic synapses
Evolving connectionist systems
Rank-order coding
Spike time based learning
Moving object recognition
EEG pattern recognition

a b s t r a c t

On-line learning and recognition of spatio- and spectro-temporal data (SSTD) is a very challenging task
and an important one for the future development of autonomous machine learning systems with broad
applications. Models based on spiking neural networks (SNN) have already proved their potential in
capturing spatial and temporal data. One class of them, the evolving SNN (eSNN), uses a one-pass rank-
order learning mechanism and a strategy to evolve a new spiking neuron and new connections to learn
new patterns from incoming data. So far these networks have beenmainly used for fast image and speech
frame-based recognition. Alternative spike-time learning methods, such as Spike-Timing Dependent
Plasticity (STDP) and its variant Spike Driven Synaptic Plasticity (SDSP), can also be used to learn spatio-
temporal representations, but they usually requiremany iterations in an unsupervised or semi-supervised
mode of learning. This paper introduces a new class of eSNN, dynamic eSNN, that utilise both rank-order
learning and dynamic synapses to learn SSTD in a fast, on-line mode. The paper also introduces a new
model called deSNN, that utilises rank-order learning and SDSP spike-time learning in unsupervised,
supervised, or semi-supervised modes. The SDSP learning is used to evolve dynamically the network
changing connection weights that capture spatio-temporal spike data clusters both during training and
during recall. The new deSNN model is first illustrated on simple examples and then applied on two case
study applications: (1) moving object recognition using address-event representation (AER) with data
collected using a silicon retina device; (2) EEG SSTD recognition for brain–computer interfaces. The deSNN
models resulted in a superior performance in terms of accuracy and speedwhen comparedwith other SNN
models that use either rank-order or STDP learning. The reason is that the deSNN makes use of both the
information contained in the order of the first input spikes (which information is explicitly present in
input data streams and would be crucial to consider in some tasks) and of the information contained in
the timing of the following spikes that is learned by the dynamic synapses as a whole spatio-temporal
pattern.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Spatio- and spectro-temporal data (SSTD), that are charac-
terised by a strong temporal component, are the most common
types of data collected in many domain areas, including engi-
neering (e.g. speech and video), bioinformatics (e.g. gene and pro-
tein expression), neuroinformatics (e.g. EEG, fMRI), ecology (e.g.
establishment of species), environment (e.g. the global warming

∗ Corresponding author at: Knowledge Engineering & Discovery Research
Institute (KEDRI), Auckland University of Technology, New Zealand. Tel.: +64 9 921
9506; fax: +64 9 921 9501.

E-mail addresses: nkasabov@aut.ac.nz (N. Kasabov), kdhoble@aut.ac.nz
(K. Dhoble), nnuntalid@aut.ac.nz (N. Nuntalid), giacomo@ini.phys.ethz.ch
(G. Indiveri).

0893-6080/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2012.11.014
process), medicine (e.g. patients risk of disease or recovery over
time), economics (e.g. financial time series, macroeconomics), etc.
However, there is lack of efficientmethods formodelling such data
and for spatio-temporal pattern recognition that can facilitate new
discoveries from complex SSTD and produce more accurate pre-
diction of spatio-temporal events in autonomousmachine learning
systems.

The brain-inspired spiking neural networks (SNN) (e.g.: Bela-
treche, Maguire, & McGinnity, 2006; Brette et al., 2007; Gerstner,
1995; Hodgkin & Huxley, 1952; Izhikevich, 2004, 2006; Kistler &
Gerstner, 2002; Maass & Zador, 1999), considered now as the third
generation of neural networks, are a promising paradigm as these
new generation of computational models are potentially capable
of modelling complex information processes due to their ability to
represent and integrate different information dimensions, such as
time, space, frequency, phase, and to deal with large volumes of

http://dx.doi.org/10.1016/j.neunet.2012.11.014
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:nkasabov@aut.ac.nz
mailto:kdhoble@aut.ac.nz
mailto:nnuntalid@aut.ac.nz
mailto:giacomo@ini.phys.ethz.ch
http://dx.doi.org/10.1016/j.neunet.2012.11.014

N. Kasabov et al. / Neural Networks 41 (2013) 188–201 189
data in an adaptive and self-organising manner using information
representation as trains of spikes.

With the development of new techniques to capture SSTD
in a fast on-line mode, e.g.: address event representation (AER)
devices, such as the artificial retina (Delbruck, 2007; Lichtsteiner
& Delbruck, 2005) and artificial cochlea (van Schaik & Liu, 2005),
the available wireless EEG equipment and with the advanced SNN
hardware technologies (Indiveri, Chicca, & Douglas, 2009; Indiveri
et al., 2011; Indiveri, Stefanini, & Chicca, 2010), new opportunities
have been created, but this still requires efficient and suitable
methods.

Thorpe and Gautrais (1998) introduced rank-order (RO) learn-
ing to achieve fast, one-pass learning of static patterns using one
spike per synapse. This method was successfully used for image
recognition (Thorpe, Guyonneau, Guilbaud, Allegraud, &Vanrullen,
2004). In Thorpe, Brilhault, and Perez-Carrasco (2010) RO was
applied with the AER spiking encoding method for a fast image
processing (static patterns) and reconstruction. The RO learning
principle was also applied for a class of SNN, called evolving SNN
(eSNN) (Kasabov, 2007; Wysoski, Benuskova, & Kasabov, 2010).

Guyonneau, VanRullen, and Thorpe (2005) demonstrated that
a neuron using STDP tends to organise its synaptic weights to
respond to earlier spikes. Masquelier, Guyonneau and Thorpe
(Masquelier, Guyonneau, & Thorpe, 2008) demonstrated that a
single LIF neuron with simple synapses can be trained with
the STDP unsupervised learning rule to discriminate a repeating
pattern of synchronised spikes on certain synapses from noise. The
training requested hundreds iterations and the more the training
was repeated, the earlier the beginning of the synchronised spiking
pattern was detected from the input stream. This work was
continued with multiple neurons, connected to each other with
winner-takes-all connections, to respond to different repeating
patterns from a common input stream Masquelier, Guyonneau,
and Thorpe (2009).

Here we propose a combination of RO learning and a type
of STDP unsupervised learning (SDSP—Spike Driven Synaptic
Plasticity, Fusi, Annunziato, Badoni, Salamon, &Amit, 2000), so that
a LIF neuron learns to recognise whole spatio-temporal pattern
using only one iteration of training-on-linemode. For this purpose,
the neuron first ‘utilises’, through RO learning, extra information
given to it—the order of the incoming spikes (rather than learning
this information in an unsupervised STDP mode using many
iterations as in the works cited above) and then the neuron tunes
the initial connection weights through SDSP learning over the
rest of the spatio-temporal pattern. As the order of spikes is an
information that can be easily calculated in a computationalmodel,
especially when using AER data, it makes sense to ‘free’ the spiking
neurons from this task, that would require hundreds of learning
repetitions, and make the learning process just one-pass, even
for complex and large spatio-temporal patterns. Here, again, one
neuron is dedicated to learn one pattern, but merging of neurons
is also explained. One version of the deSNN — deSNNm, uses the
neuronal Post Synaptic Potentials (PSP) to identify the winning
neuron, similar to other implementations. But another version
— deSNNs, defines the winning neuron based on a comparison
between the synaptic weights over time.

The paper presents in Section 2 the principles of eSNN. In
Section 3 temporal spike learning and more specifically — STDP
and SDSP rules are presented. The new SNN model — dynamic
evolving SNN (deSNN) is introduced in Section 4. The deSNN
is first illustrated with simple examples and then demonstrated
on a moving object classification problem, where AER data was
collected using a silicon retina device (see Section 5). A second
case study is the recognition of frame-based EEG SSTD (Section 6).
The data used in both case study experiments is noisy by nature
due to the characteristics of the processes and the measurement.
Fig. 1. Integrate-and-fire neuron with RO learning.

A comparative analysis of results between eSNN, deSNN, and
a SNN that uses only SDSP learning rule, shows the advantage
of the proposed deSNN model in terms of fast and accurate
learning of both AER and frame-based SSTD. Section 7 discusses
the implementation of the deSNN in a neuromorphic environment
and Section 8 presents future directions.

2. Evolving connectionist systems (ECOS) and evolving spiking
neural networks (eSNN)

2.1. ECOS

In general, eSNN use the principles of evolving connectionist
systems (ECOS), where neurons are created (evolved) incremen-
tally to capture clusters of input data either in an unsupervised
way, e.g.: DENFIS (Kasabov & Song, 2002), or in a supervised way,
e.g. EFuNN (Kasabov, 2001). All developed models of ECOS type,
from simple ECOS (Kasabov, 2002; comprehensive review inWatts
(2009)), to eSNN (Kasabov 2007, comprehensive review in Schliebs
and Kasabov (2012)), and then—to the introduced in this paper dy-
namic eSNN, have been guided by the following 7 main principles
(Kasabov, 2002):

(1) They evolve in an open space.
(2) They learn in on-line, incremental mode, possibly through one

pass of incoming data propagation through the system.
(3) They learn in a ‘life-long’ learning mode.
(4) They learn both as individual systems and as an evolutionary

population of systems.
(5) They use constructive learning and have evolving structures.
(6) They learn and partition the problem space locally, thus allow-

ing for a fast adaptation and tracing the evolving processes over
time.

(7) They facilitate different types of knowledge, mostly a combi-
nation of memory-based, statistical and symbolic knowledge.

2.2. Evolving spiking neural networks (eSNN)

The eSNN paradigm extends the early ECOS models with the
use of integrate and fire (IF) model of a neuron (Kistler & Gerstner,
2002) and RO learning. This is schematically shown in Fig. 1.

The RO learning motivation is based on the assumption that
most important information of an input pattern is contained in
earlier arriving spikes (Thorpe and Gautrais 1989). It establishes
a priority of inputs based on the order of the spike arrival on
the input synapses for a particular pattern. This is a phenomenon
observed in biological systems aswell as an important information
processing concept for some spatio-temporal problems, such as
computer vision and control. RO learning makes use of the
information contained in the order of the input spikes (events).
This method has two main advantages when used in SNN:
(1) fast learning (as the order of the first incoming spikes is often
sufficient information for recognising a pattern and for a fast
decisionmaking andonly onepass propagation of the input pattern
may be sufficient for the model to learn it); (2) asynchronous,
data-driven processing. As a consequence, RO learning is most
appropriate for AER input data streams as the address-events are

190 N. Kasabov et al. / Neural Networks 41 (2013) 188–201
Fig. 2. Example of an eSNN for classification using population RO coding of
inputs (Soltic & Kasabov, 2010). Each input is connected to several feature neurons
representing overlapping Gaussian receptive fields and producing spikes according
to how much the current input variable value belongs to the receptive field: the
higher the membership degree—the earlier a spike is generated and forwarded to
the output neurons for learning or recall. A pool of output neurons representing
different input vectors or prototypes is evolved for each class. This model was used
for odour recognition. In unsupervised learning, the output neurons are not labelled
and not organised as class pools.

conveyed into the SNN ‘one by one’, in the order of their happening
(Delbruck, 2007; Lichtsteiner & Delbruck, 2005).

Thorpe (2009) and Thorpe and Gautrais (1998) utilised RO
learning to achieve fast, one-pass learning of static patterns
(images). This idea was used in a class of SNN, called evolving SNN
(eSNN) (Kasabov, 2007; Wysoski et al., 2010). An eSNN evolves its
structure and functionality in an on-line manner, from incoming
information. For every new input data vector, a new output neuron
is dynamically allocated and connected to the input neurons
(feature neurons). The neuron’s connections are established using
the RO rule for the output neuron to recognise this vector (frame,
static pattern) or a similar one as a positive example. The weight
vectors of the output neurons represent centres of clusters in the
problem space and can be represented as fuzzy rules (Soltic &
Kasabov, 2010).

In some implementations neurons with similar weight vectors
are merged based on Euclidean distance between them. That
makes it possible to achieve a very fast learning (only one passmay
be sufficient), both in a supervised and in an unsupervised mode
(Kasabov, 2007). When in an unsupervised mode, the evolved
neurons represent a learned pattern (or a prototype of patterns).
The neurons can be labelled and grouped according to their
belonging to the same class if the model performs a classification
task in a supervised mode of learning — an example is shown
in Fig. 2.

During a learning phase, for each M-dimensional training input
pattern (sample, example, vector) Pi a new output neuron i is
created and its connection weights wj,i (j = 1, 2, . . . ,M) to the
input (feature) neurons are calculated based on the order of the
incoming spikes on the corresponding synapses using the RO
learning rule:

wj,i = α · modorder(j,i) (1)

where: α is a learning parameter (in a partial case it is equal to 1);
mod is amodulation factor, that defines how important the order of
the first spike is;wj,i is the synaptic weight between a pre-synaptic
neuron j and the postsynaptic neuron i; order(j, i) represents the
order (the rank) of the first spike at synapse j, i ranked among all
spikes arriving from all synapses to the neuron i; order(j, i) has a
value 0 for the first spike to neuron i and increases according to the
input spike order at other synapses.
While the input training pattern (example) is presented (all
input spikes on different synapses, encoding the input vector are
presented within a time window of T time units), the spiking
threshold Thi of the neuron i is defined to make this neuron spike
when this or a similar pattern (example) is presented again in the
recall mode. The threshold is calculated as a fraction (C) of the total
PSPi (denoted as PSPimax) accumulated during the presentation of
the input pattern:

PSPimax =

(j)

modorder(j,i) (2)

Thi = C · PSPimax. (3)

If the weight vector of the evolved and trained new neuron is simi-
lar to the one of an already trained neuron (in a supervised learning
mode for classification this is a neuron from the same class pool),
i.e. their similarity is above a certain threshold Sim, the newneuron
will be merged with the most similar one, averaging the connec-
tionweights and the threshold of the two neurons (Kasabov, 2007;
Wysoski et al., 2010). Otherwise, the new neuron will be added to
the set of output neurons (or the corresponding class pool of neu-
rons when a supervised learning for classification is performed).
The similarity between the newly created neuron and a training
neuron is computed as the inverse of the Euclidean distance be-
tweenweightmatrices of the two neurons. Themerged neuron has
weighted average weights and thresholds of the merging neurons.

While an individual output neuron represents a single input
pattern, merged neurons represent clusters of patterns or proto-
types in a transformed spatial—RO space. These clusters can be rep-
resented as fuzzy rules (Soltic & Kasabov, 2010) that can be used to
discover new knowledge about the problem under consideration.

The eSNN learning is adaptive, incremental, theoretically—
‘lifelong’, so that the system can learn new patterns through cre-
ating new output neurons, connecting them to the input neurons,
and possibly merging the most similar ones. The eSNN implement
the 7 ECOS principles from Section 1.

During the recall phase, when a new input vector is presented
and encoded as input spikes, the spiking pattern is submitted to
all created neurons during the learning phase. An output spike is
generated by neuron i at a time l if the PSPi,(l) becomes higher
than its threshold Thi. After the first neuron spikes, the PSP of all
neurons are set to initial value (e.g. 0) to prepare the system for
the next pattern for recall or learning.

The postsynaptic potential PSPi(l) of a neuron i at time l is
calculated as:

PSPi(l) =

t=0,1,2,...,l

(j)

ej(t) · modorder(j,i) (4)

where: ej(t) = 1 if there is a first spike at time t on synapse j;
order(j, i) is the rank order of the first spike at synapse j among all
spikes to neuron i for this recall pattern.

The parameter C , used to calculate the threshold of a neuron i,
makes it possible for the neuron i to emit an output spike before the
presentation of the whole learned pattern (lasting T time units) as
the neuronwas initially trained to respond. As a partial case C = 1.

The recall procedure can be performed using different recall al-
gorithms implying different methods of comparing input patterns
for recall with already learned patterns in the output neurons:

(a) The first one is described above. Spikes of the new input pattern
are propagated as they arrive to all trained output neurons and
the first one that spikes (its PSP is greater that its threshold)
defines the output. The assumption is that the neuron that best
matches the input pattern will spike earlier based purely on
the PSP (membrane potential). This type of eSNN is denoted as
eSNNm.

N. Kasabov et al. / Neural Networks 41 (2013) 188–201 191
(b) The second one implies a creation of a new output neuron for
each recall pattern, in the same way as the output neurons
were created during the learning phase, and then—comparing
the connection weight vector of the new one to the already
existing neurons using Euclidean distance. The closest output
neuron in terms of synaptic connectionweights is the ‘winner’.
This method uses the principle of transductive reasoning
and nearest neighbour classification in the connection weight
space. It compares spatially distributed synapticweight vectors
of a new neuron that captures a new input pattern and existing
ones. We will denote this model as eSNNs.

The main advantage of the eSNN when compared with other su-
pervised or unsupervised SNN models is that it is computationally
inexpensive and boosts the importance of the order in which in-
put spikes arrive, thus making the eSNN suitable for on-line learn-
ing with a range of applications. For a comprehensive study of
eSNN see Wysoski et al. (2010) and for a comprehensive review
— (Schliebs & Kasabov, 2012).

The problem of the eSNN is that once a synaptic weight
is calculated based on the first spike using the RO rule, it is
fixed and does not change to reflect on other incoming spikes
at the same synapse, i.e. there is no mechanism to deal with
multiple spikes arriving at different times on the same synapse. The
synapses are static. While the synapses capture some (long term)
memory during the learning phase, they have limited abilities
(only through the PSP growth) to capture short term memory
during awhole spatio-temporal pattern presentation. Learning and
recall of complex spatio-temporal patterns in an on-line mode
would need not only fast initial set of connectionweights, based on
the first spikes, but also dynamic changes of these synapses during
the pattern presentation.

Section 4 proposes an extended eSNNmodel, called deSNN, that
utilises the SDSP learning rule (Fusi et al., 2000) to implement
dynamic changes of the synaptic weights, after they are initialised
with the RO rule, in both learning and recall phases. Sections 5
and 6 demonstrate that the proposed deSNN performs better than
either the eSNN or the SDSP alone for two different classes of
spatio-temporal problems: moving object recognition based on
AER, and EEG recognition based on temporal EEG frames. This is
due to the combination of the fast RO learning and the dynamic
synapses realised through the SDSP. The deSNN model is suitable
for neuromorphic implementation (Section 7) and would make
possible new engineering applications of the fast developing SNN
technologies (Section 8).

3. Spike-time learning methods

Spike-time learning is observed in auditory and visual infor-
mation processing in the brain as well as in the motor control
(Bohte, 2004; Morrison, Diesmann, & Gerstner, 2008). Its use
in neuro-prosthetics is essential along with applications for a
fast, real-time recognition and control of sequence of related
processes (Bichler, Ouerlioz, Thorpe, Bourgoin, & Gamrat, 2011).
Temporal coding accounts for the precise time of spikes and
has been utilised in several learning rules, most popular being
Spike-Time Dependent Plasticity (STDP) (Song, Miller, & Abbott,
2000) and its variant—SDSP (Brader, Senn, & Fusi, 2007; Fusi
et al., 2000). SDSP was also implemented in a SNN hardware chip
(Indiveri et al., 2009).

3.1. The spike time dependent plasticity (STDP) learning rule

The STDP learning rule represents a Hebbian form of plasticity
(Hebb, 1949) in the form of long-term potentiation (LTP) and
depression (LTD) (Song et al., 2000). Efficacy of synapses is
Fig. 3. An illustration of the STDP learning rule (Song et al., 2000). The change in
efficacy of a synaptic weight (F) depends of the time difference between the pre-
synaptic and post-synaptic spikes.

strengthened or weakened based on the timing of post-synaptic
action potentials in relation to the pre-synaptic spike (example is
given in Fig. 3). If the difference in the spike time between the
pre-synaptic and post-synaptic neurons is negative (pre-synaptic
neuron spikes first) than the connection weight between the
two neurons increases, otherwise—it decreases. Through STDP
connected neurons learn consecutive temporal associations from
data. Pre-synaptic activity that precedes post-synaptic firing can
induce long-term potentiation (LTP), reversing this temporal order
causes long-term depression (LTD).

3.2. The spike driven synaptic plasticity (SDSP) learning rule

The SDSP is a semi-supervised learning method (Fusi et al.,
2000), a variant of the STDP rule, that directs the change of the
synaptic plasticity Vw0 of a synapse w0 depending on the time of
spiking of the pre-synaptic neuron and the post-synaptic neuron.
Vw0 increases or decreases, depending on the relative timing of the
pre- and post-synaptic spikes.

If a pre-synaptic spike arrives at the synaptic terminal while
the post-synaptic neuron’s membrane potential is above a given
threshold Vmth (i.e. typically shortly before a postsynaptic spike
is emitted), the synaptic efficacy is increased (potentiation). If the
post-synaptic neuron’s membrane potential is low (i.e. typically
shortly after a spike is emitted) when the pre-synaptic spike
arrives, synaptic efficacy is decreased (depression). This change in
synaptic efficacy can be expressed as:

1Vw0 =
Ipot(tpost)

Cp
, if Vmemt > Vmth (5)

1Vw0 = −
Idep(tpost)

Cd
if Vmemt < Vmth. (6)

The SDSP learning rule introduces a long termdynamic ‘drift’ of the
synaptic weights either ‘up’ or ‘down’, depending on the value of
theweight itself. If theweight is above a given threshold Vwth then
the weight is slowly driven to a fixed high value. Conversely, if the
weight is driven by the learning mechanism to a low value, below
Vwth, then the weight is slowly driven to a fixed low value. These
two values represent the two stable states of this bistable learning
method. As the finalweights, at the end of learning, can be encoded
with 1 single bit, this learning rule lends itself to a very efficient
implementation in hardware, both with analogue VLSI circuits, as
well as FPGA implementations (Mitra, Fusi, & Indiveri, 2009).

The SDSP rule can be used also as a supervised learning
algorithm, when a ‘teacher signal’, that drives the post-synaptic
neuron’smembrane potential high or low is applied alongwith the
training spike pattern.

192 N. Kasabov et al. / Neural Networks 41 (2013) 188–201
In Brader et al. (2007) the SDSP model has been successfully
used to train and test a SNN for 293 character recognition (classes).
Each character (a static image) is represented as 2000 bit feature
vector, and each bit is transferred into spike rates, with 50 Hz spike
burst to represent 1 and 0 Hz to represent 0. For each class, 20
different training patterns are used and 20 neurons are allocated,
one for each pattern (altogether 5860) and trained for several
thousand iterations. Rate coding of information was used rather
than temporal coding, which is typical for unsupervised learning
in SNN.

While successfully used for the recognition of mainly static
patterns, the potential of the SDSP SNN model and its hardware
realisation have not been fully explored for SSTD, definitely not for
fast on-line learning of complex spatio-temporal patterns.

Masquelier, Guyonneau and Thorpe (T. Masquelier, R. Guyon-
neau and S. Thorpe, PlosONE, Jan2008) demonstrated that a sin-
gle LIF neuron with simple synapses can be trained with the STDP
unsupervised learning rule to discriminate a repeating pattern of
synchronised spikes on certain synapses from noise. The training
requested hundreds iterations and the more the training was re-
peated, the earlier the beginning of the synchronised spiking pat-
tern was detected from the input stream.

The introduced in the next section deSNNutilises a combination
of RO learning and SDSP learning, so that one LIF neuron is
trained to recognise whole spatio-temporal input pattern onmany
synaptic inputs using only one iteration of training, on-line mode.
For this purpose, the neuron first ‘utilises’ through RO learning
important the information of the order the incoming spikes (rather
than learning this information in an unsupervised STDP mode
using many iterations) and then the neuron tunes the initial
connection weights through STDP learning over the rest of the
spatio-temporal pattern. For every spatio-temporal input pattern
a new, separate output neuron is evolved to learn this pattern.
Output neurons may be merged based on closeness.

3.3. Dynamic synapses

Both STDP and SDSP provide means for implementing synap-
tic plasticity that have been already utilised in other methods. A
phenomenological model for the short-term dynamics of synapses
has been proposedmore than a decade ago byMaass andMarkram
(2002) and by Tsodyks, Pawelzik, and Markram (1998). The model
which is based on experimental data of biological synapses, sug-
gests that the synaptic efficiency (weight) is a dynamic parameter
that changes with every pre-synaptic spike due to two short-term
synaptic plasticity processes: facilitation and depression. This in-
herent synaptic dynamics empower neural networks with a re-
markable capability for carrying out computations on temporal
patterns (i.e., time series) and spatio-temporal patterns. Maass and
Sontag (2000) in their theoretical analysis considering analogue
input showed that with just a single hidden layer such networks
can approximate a very rich class of nonlinear filters. However
there is a need for similar study in the presence of many inputs
that carry sequences of spikes in a temporal relationship. It is sug-
gested also that dynamic synapseswork asmemory buffers (Maass,
Natschlaeger &Markram, 2002) due to the fact that a current spike
is influenced by previous spikes. Furthermore a SNNwith dynamic
synapses is showed to be able to induce a Finite State Machine
mechanism (Natschläger &Maass, 2002). A number of studies have
utilised dynamic synapses in practical applications. One of the
first practical application of dynamic synapses was speech recog-
nition (Namarvar, Liaw, & Berger, 2001) and later, image filtering
(Mehrtash, Jung, & Klar, 2003).

The proposed in the next section deSNN model extends the
eSNN with the introduction of dynamic synapses for the purpose
of complex SSTD pattern recognition.
4. Dynamic evolving SNN (deSNN)

The main disadvantage of the RO learning in eSNN is that
the model adjusts the connection weight of each synapse once
only (based on the rank of the first spike on this synapse), which
may be appropriate for static pattern recognition, but would not
be efficient for complex SSTD. In the latter case the connection
weights need to be further tuned based on the following spikes
arriving on the same synapse over time and that iswhere the spike-
time learning (e.g. STDP or SDSP) can be employed in order to
implement dynamic synapses.

In the proposed deSNN both the RO and the SDSP learning
rules are utilised. While the RO learning will set the initial
values of the connection weights w(0) (utilising for example the
existing event order information in an AER data), the SDSP rule
will adjust these connection weights based on further incoming
spikes (events) as part of the same learned spatio-temporal
pattern. Adjusting synaptic weights due to every pre-synaptic
spike was implemented in the dynamic synapse model of Maass
and Markram (2002).

As in the eSNN, during a learning phase, for each training input
pattern (sample, example, vector) Pi a new output neuron i is
created and its connection weights wj,i to the input (feature)
neurons are initially calculated as wj,i(0) based on the order of
the incoming spikes on the corresponding synapses using the RO
learning rule—formula (1).

Once a synaptic weightwj,i is initialised, based on the first spike
at the synapse j, the synapse becomes dynamic and adjusts its
weight through the SDSP algorithm. It increases its value with a
small positive value (positive drift parameter) at any time t a new
spike arrives at this synapse and decreases its value (a negative
drift parameter) if there is no spike at this time.

1wj,i(t) = ej(t) · D (7)

where: ej(t) = 1 if there is a consecutive spike at synapse j at
time t during the presentation of the learned pattern by the output
neuron i and (−1) otherwise. In general, the drift parameter D can
be different for ‘up’ and ‘down’ drifts.

All dynamic synapses change their values in parallel for every
time unit t during a presentation of an input spatio-temporal
pattern Pi learned by an output neuron i, some of them going up
and some—going down, so that all synapses (not a single one) of
the neuron could collectively capture some temporal relationship
of spike timing across the learned pattern.

While an input training pattern (example) is presented (all
input spikes on different synapses, encoding the input vector are
presented within a time window of T time units), the spiking
threshold Thi of the neuron i is defined to make this neuron spike
when this or a similar pattern (example) is presented in the recall
mode. The threshold is calculated as a fraction (C) of the total PSPi
(denoted as PSPimax) accumulated during the presentation of the
whole input pattern:

PSPimax =

t=1,2,...,T

j=1,2,...,M

fj(t) · wj,i(t) (8)

Thi = C · PSPimax (9)

where: T represents the time units in which the input pattern is
presented; M is the number of the input synapses to neuron i;
fj(t) = 1 if there is spike at time t at synapse j for this learned input
pattern, otherwise it is 0; wj,i(t) is the efficacy of the (dynamic)
synapse between j and i neurons calculated at time t with the use
of formula (7).

The resulted deSNN model after training will contain the
following information:

N. Kasabov et al. / Neural Networks 41 (2013) 188–201 193
Table 1
The deSNN training algorithm.

1: Set deSNN parametersa (including: Mod, C, Sim, and the SDSP parameters)
2: For every input spatio-temporal spiking pattern PiDo

2a. Create a new output neuron i for this pattern and calculate the initial values of connection weightswi(0) using the RO learning formula (1).
2b. Adjust the connection weightswi for consecutive spikes on the corresponding synapses using the SDSP learning rule (formula (7)).
2c. Calculate PSPimax using formula (8).
2d. Calculate the spiking threshold of the ith neuron using formula (9).
2e. (Optional) If the new neuron weight vectorwi is similar in its initialwi(0) an finalwi(T) values after training to the weight vector of an already trained output

neuron using Euclidean distance and a similarity threshold Sim, then merge the two neurons (as a partial case only initial or final values of the connection weights can
be considered or a weighted sum of them)

Else
Add the new neuron to the output neurons repository.
End If
End For (Repeat for all input spatio-temporal patterns for learning)

a The performance of the deSNN depends on the optimal selection of its parameters as illustrated in the examples below.
– Number of input neuronsM and output neurons N;
– Initial wi(0) and final wi(T) vectors of connection weights and

spiking threshold Thi for each of the output neurons i. The pairs
[wi(0),wi(T)], i = 1, 2, . . . ,N would capture collectively dy-
namics of the learning process for each spatio-temporal pattern
and each output neuron (as a partial case only initial or final val-
ues of the connection weights can be considered or a weighted
sum of them).

– deSNN parameters.

The overall deSNN training algorithm is presented in Table 1.

Example 1. Fig. 4 illustrates the main idea of the deSNN learning
algorithm. A single spatio-temporal pattern of four input spike
trains is learned into a single output neuron. RO learning is applied
to calculate the initial weights based on the order of the first spike
on each synapse (shown in red).

Then STDP (in this case—SDSP) rule is applied to dynamically
tune these connection weights. The SDSP algorithm increases
the assigned connection weight of a synapse which is receiving
a following spike and at the same time depresses the synaptic
connections of synapses that do not receive a spike at this time.
Due to a bi-stability drift in the SDSP rule, once a weight reaches
the defined High value (resulting in LTP) or Low value (resulting
in LTD), this connection weight is fixed to this value for the rest of
the training phase. The rate at which a weight reaches LTD or LTP
depends upon the set parameter values.

For example, if input spikes arrive at times (0, 1, 2) ms on the
first synapse, and are shifted by 1 ms for the other 3 synapses as
shown in Fig. 4, the four initial connection weights w1, w2, w3, w4
to the output neuron will be calculated as: 1, 0.8, 0.64, 0.512
correspondingly, when the parametermod = 0.8. If the SDSP High
value is 0.6 and Low value is 0, the first three weights will be fixed
to 0.6 and the fourth onewill drift up 2 times. If the drift parameter
is set to 0.00025, the final weight value of the fourth synapse will
be 0.5125. After training both the initial and the final weights can
be memorised.

Example 2. In this example we consider 2 spatio-temporal pat-
terns of 5 inputs each (Table 2) to be learned in two output neu-
rons. The initial (after RO learning) and final (after SDSP learning)
connection weights are shown in Table 2 and also in Fig. 5.

A code written in Python for learning the above 2 patterns in 2
output neurons, each having 5 inputs, is given in Appendix A. This
code can be modified for many other deSNN simulations.

The synaptic drift caused by the SDSP makes synaptic weights
dynamically learn spike time relationships between different input
spike trains as part of the same spatio-temporal pattern. The
hypothetical examples above are of a very small scale and highly
simplified scenarios. In reality there are hundreds and thousands of
input synapses to a neuron and hundreds and thousands of spikes
at each synapse forming a complex spatio-temporal pattern to be
learned, described by some statistical characteristics. Even a small
synaptic drift can make a difference. This is illustrated in the two
case studies in Sections 5 and 6.

The connection weights learned in a deSNN represent the input
patterns in an internal, computational spatio-temporal space built
by the model. How many different input patterns can be learned
and discriminated in this space depends on the choice of themodel
parameters. This issue will be discussed in Section 8.

To summarise the learning of the deSNN, for every spatio-
temporal input pattern, a new, separate output neuron is evolved
to learn this pattern even the patterns may of the same class (for
classification tasks) or very similar (for unsupervised learning).
Output neurons may be merged based on closeness. Here we do
not use winner-takes-all connections between output neurons (as
it is the case in Masquelier et al. (2009) or in Brader et al. (2007)).
Here it is a matter of a proper selection of the parameters for both
RO and STDP learning that makes it possible for the deSNN to learn
a whole spatio-temporal pattern.

So far, we have presented the learning phase of a deSNNmodel.
In terms of recall, two types of deSNN are proposed that differ in
the recall algorithms. They mainly correspond to the two types of
eSNN from Section 2-eSNNs and eSNNm:

(a) deSNNm: After learning, only the initially created connection
weights (with the use of the RO rule) are restored as long term
memory in the synapses and the model. During recall on a
new spatio-temporal pattern the SDSP rule is applied so that
the initial synaptic weights are modified on a spike time basis
according to the new pattern using formula (7) as it is during
the SDSP learning phase. At every time moment t the PSP of
all output neurons are calculated. The new input pattern is
associatedwith the neuron i if the PSPi(t) is above its threshold
Thi. The following formula is used:

PSPi(t) =

l=0,1,2,...,t

j=1,2,...,M

fj(l) · wj,i(l) (10)

where: t represents the current time unit during the presen-
tation of the input pattern for recall; M is the number of the
input synapses to neuron i; fj(l) = 1 if there is spike at time
l at synapse j for this input pattern, otherwise it is 0; wj,i(l) is
the efficacy of the dynamic synapse between j and i neurons at
time l.

(b) deSNNs: This model corresponds to the eSNNs and is based
on the comparison between the synaptic weights of a newly
created neuron to represent the new spatio-temporal pattern
for recall, and the connection weights of the created during
training neurons. The new input pattern is associated with
the closest output neuron based on the minimum distance
between the weight vectors. As the synaptic weights are
dynamic, the distance should be calculated in a different way

194 N. Kasabov et al. / Neural Networks 41 (2013) 188–201
Fig. 4. A simple example to illustrate the main principle of the deSNN learning algorithm. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
Table 2
Initial connection weights (after the ROC learning) and final (after the further SDSP learning) of each of two neurons trained on Pattern 1
and Pattern 2 correspondingly. Each pattern consists of 5 inputs and several spikes on each input, generated at different consecutive times
(in ms).

Pattern 1 Pattern 2
Spike times (ms) ROC SDSP Spike times (ms) ROC SDSP

Input 1: 0.0, 1.0, 2.0, 3.0, 4.0 1.0000 0.9980 Input 1: 4.0, 5.0, 6.0, 7.0, 8.0 0.4096 0.0000
Input 2: 1.0, 2.0, 3.0, 4.0, 5.0 0.8000 0.7980 Input 2: 3.0, 4.0, 5.0, 6.0, 7.0 0.5120 0.0000
Input 3: 2.0, 3.0, 4.0, 5.0, 6.0 0.6400 0.0000 Input 3: 2.0, 3.0, 4.0, 5.0, 6.0 0.6400 0.0000
Input 4: 3.0, 4.0, 5.0, 6.0, 7.0 0.5120 0.0000 Input 4: 1.0, 2.0, 3.0, 4.0, 5.0 0.8000 0.7980
Input 5: 4.0, 5.0, 6.0, 7.0, 8.0 0.4096 0.0000 Input 5: 0.0, 1.0, 2.0, 3.0, 4.0 1.0000 0.9980

Time of a pattern presentation T = 8.0 ms
Fig. 5. Initial and final synaptic weights of the two output neurons for Example 2.
than the distance measured in the eSNN possibly using both
the initial w(0) and the final w(T) connection weigh vectors
learned during training and recall. As a partial case, only the
final weight vector w(T) can be used.

5. deSNN for moving object recognition with AER

Many of the real-timemachine vision systems have an inherent
limitation of processing information on a frame by frame basis,
mainly due to the redundant information present within and
across the frames. However, this drawback can be overcome with
the use of AER as illustrated in Fig. 6. In AER an event is generated
based on the corresponding changes in the log intensity of the
signal. This is the case in the artificial silicon retina sensory
device (Lichtsteiner & Delbruck, 2005). It mimics aspects of our
biological vision system which utilises asynchronous spike events
captured by the retina. This allows for fast and efficient processing
since it discards irrelevant redundant information by capturing
only information corresponding to the temporal changes in log
intensity.

Here we have used AER SSTD of a moving object collected
through the DVS silicon retina device. The object is a moving
irregular wooden bar in front of the camera (Dhoble, Nuntalid,
Indivery, &Kasabov, 2012). Two classes ofmovements are recorded
as: ‘crash’ and ‘no crash’. For the ‘crash’ samples, the object is
recorded as it approaches the camera. For ‘no crash’ movements,
motions such as ‘up/down’ are recorded at a fixed distance from
the camera. The size of the recorded area is 7000 pixels. Each
movement is recorded 10 times, 5 used for training and 5 for
testing. Five models are created, trained and tested, using different
learning rules: SDSP; eSNNs; eSNNm; deSNNs and deSNNm. There
is no merge of neurons in the eSNN and deSNN models. 5 output
neurons are evolved for each of the 2 classes, each neuron trained
on a single training example. The parameter C for the eSNN and
the deSNN models has been optimised between 0 and 1 (with a
step of 0.1). All parameters and their values used in the models
are presented in Table 3. The classification results along with
the number of training iterations are shown in Table 4. The best
classification result, in terms of number of true positive plus true
negative examples divided to the total number of examples, is 0.9
obtained for a threshold using parameter C = 0.55.

The results show thatwhen using deSNNmonAER data a higher
accuracy of classification is achieved when compared with the
other models. This is because in addition to the useful information
contained in the order of the incoming spikes across all synapses,

N. Kasabov et al. / Neural Networks 41 (2013) 188–201 195
Fig. 6. The figure shows an idealised AER pixel encoding of video data. The ON
and OFF events represent significant changes in log I (intensity of the signal). A
positive change greater than a threshold generates an excitatory spike event, while
a negative change generates an inhibitory spike event; no change—no spike.
Source: Adapted from Lichtsteiner and Delbruck (2005).

Table 3
deSNN parameter settings for the moving object recognition experiment.

Neurons and synapses

Excitatory synapse time constant 2 ms
Inhibitory synapse time constant 5 ms
Neuron time constant (tau mem) 20 ms
Membrane leak 20 mV
Spike threshold (Vthr) 800 mV
Reset value 0 mV
Fixed inhibitory weight 0.20 V
Fixed excitatory weight 0.40 V
Thermal voltage 25 mV
Refractory period 4 ms

Learning related parameters (SDSP)

Up/Down weight jumps (Vthm) 5 × (Vthr/8)
Calcium variable time constant (tau ca) 5 × (tau mem)
Steady-state asymptote for Calcium variable (wca) 50 mV
Stop-learning threshold 1 (stop if Vca < thk1) 1.7 × wca
Stop-learning threshold 2 (stop LTD if Vca > thk2) 2.2 × wca
Stop-learning threshold 2 (stop LTP if Vca > thk3) 8 × (wca–wca)
Plastic synapse (NMDA) time constant 9 ms
Plastic synapse high value (wp hi) 6 mV
Plastic synapse low value (wp lo) 0 mV
Bistability drift 0.25
Delta weight 0.12 × wp hi

Other parameters/values

Input size 7000 spike train
Simulation time 1600 ms
mod (for rank order) 0.8

Table 4
Classification accuracy on the case study moving object recognition task when
different SNN classifiers are used on the same training and test data sets.

SDSP SNN eSNNs eSNNm deSNNs deSNNm

Classification accuracy
on the test samples

70% 40% 60% 60% 90%

Number of training
iterations

5 1 1 1 1

what also matters is the intensity of the following incoming
spikes at every synapse for this particular pattern. The higher the
intensity, the higher the chances of a synapse to further increase
its efficacy which is obtained through the use of the SDSP learning
rule and properly selected parameters. For a single application of
the SDSP rule (first column in Table 4) the accuracy did not increase
further with the increase of the number of the training iterations.

An illustration of the learning process of an input pattern ‘crash’
over 1600 ms is shown in Fig. 7a. This figure shows the spike
raster plot of a single AER of a ‘crash’ pattern (top figure; the
dots represent spikes of 7000 input neurons representing spatially
distribute pixels over 1600ms), and also the changes of theweights
(middle figure) and themembrane potential (low figure) for output
neuron 0 during the one-pass learning in a deSNNs.

This experiment demonstrates the feasibility of using deSNNm
for moving object recognition on a ‘crash/no crash’ example,
which can lead to important applications of avoiding collisions
between fast moving objects (e.g. cars, rockets, space objects). The
classification performance of a trained deSNNm is significantly
different from a random classification as it is illustrated with the
ROC curve (Fig. 7b).

6. deSNN for EEG pattern recognition with frame-based repre-
sentation and BSA spike transformation algorithm

In contrast to the previous case study where AER was used to
encode input SSTD, here recordings (frames) of EEG signals over
time are used for learning and recognition using the RIKEN EEG
dataset (see (Kasabov, 2007)). The dataset was collected in the
RIKEN Brain Science Institute in Japan. It includes 3 meaningful
stimulus conditions (classes): Class1 — EEG data recorded from a
subject when auditory stimulus was presented; Class2 — Visual
stimulus is presented; Class3 — Mixed auditory and visual stimuli
are presented. A ‘No stimulus’ EEG data was also collected, but it is
ignored for this experiment. The EEG data was acquired using a 64
electrode EEG system that was filtered using a 0.05–500 Hz band-
pass filter and sampled at 2 kHz. An EEG SSTD sample has a length
of 50 ms in actual time. 11 samples of each class were selected,
80% of them used for training and 20% for testing. The simulation
time was extended 10 times (to 500 ms) for this experiment
where the amount of EEG recordings within an input pattern is the
same—2000.

Here we have used BSA spike encoding scheme (Nuntalid,
Dhoble, & Kasabov, 2011; Schrauwen & Van Campenhout, 2003)
to represent an EEG vector (frame) into spikes. This encoding
scheme has already been used for encoding spectro-temporal
data (sound). EEG signals are both spatio-temporal and spectro-
temporal and that is the reason we have chosen the BSA encoding.
The key benefit of using BSA is that the frequency and amplitude
features are smoother in comparison to the HSA (Hough Spike
Algorithm) encoding scheme (Schrauwen & Van Campenhout,
2003). Moreover, due to the smoother threshold optimisation
curve, the representation is also less susceptible to changes in the
filter and the threshold. Studies have shown that thismethod offers
an improvement of 10–15 dB over the HSA spike encoding scheme.

The parameters of the deSNN and the eSNN models trained on
the EEG data are shown in Table 5 and the classification results—in
Table 6. The best accuracy is obtained with the use of the deSNNs
model. All models in this experiment were run only for 1 iteration
of training (one-pass) in order to make a fair comparison between
them.

The results when using only RO learning (eSNN) or only SDSP
(SDSP SNN) are not as good as the results when deSNNs was used.
This is for the following reasons:
(a) Using only RO learning is not sufficientwhen framebased input

data is transformed into spikes through the BSA algorithm;
(b) Using only SDSP learning ignores the importance of the

first/initial spikes from each spike trains, but these spikes carry
important information for brain activity;

(c) deSNNmcould in principle produce good results, but it requires
a fine tuning of the parameters including a proper choice of
the C parameter for the calculation of the neuronal spiking
thresholds, which in this case was difficult to find as there was
no automated optimisation procedure applied;

(d) deSNNs performed better that deSNNmdue to the high density
of spikes in the EEG spatio/spectro temporal patterns and the
fact that deSNNs is more robust to choosing the simulation
parameter values than the deSNNm.

196 N. Kasabov et al. / Neural Networks 41 (2013) 188–201
Fig. 7a. This figure shows the spike raster plot of a single AER of an input pattern denoted as ‘crash’ (top figure; the dots represent spikes of 7000 input neurons representing
spatially distribute pixels over 1600 ms), and also the changes of some of the weights (middle figure) and the membrane potential (low figure) for output neuron 0 during
the one-pass learning in a deSNN.
Table 5
Parameter setting for the case study on EEG spatio/spectro temporal pattern
recognition.

Neurons and synapses

Excitatory synapse time constant 2 ms
Inhibitory synapse time constant 5 ms
Neuron time constant (tau mem) 20 ms
Membrane leak 20 mV
Spike threshold (Vthr) 800 mV
Reset value 0 mV
Fixed inhibitory weight 0.20 V
Fixed excitatory weight 0.40 V
Thermal voltage 25 mV
Refractory period 4 ms

Learning related parameters (SDSP)

Up/Down weight jumps (Vthm) 5 × (Vthr/8)
Calcium variable time constant (tau ca) 5 × (tau mem)
Steady-state asymptote for Calcium variable (wca) 50 mV
Stop-learning threshold 1 (stop if Vca < thk1) 1.7 ×wca
Stop-learning threshold 2 (stop LTD if Vca > thk2) 2.2 × wca
Stop-learning threshold 2 (stop LTP if Vca > thk3) 8× (wca–wca)
Plastic synapse (NMDA) time constant 9 ms
Plastic synapse high value (wp hi) 6 mV
Plastic synapse low value (wp lo) 0 mV
Bistability drift 0.25
Delta weight 0.12 ×wp hi

Other parameters/values

Input size (64 electrodes EEG) 64 spike train
Simulation time 500 ms
mod (for rank order) 0.8

Table 6
Classification results on the EEG case study of SSTD using different SNN models.

SDSP SNN eSNNs eSNNm deSNNs deSNNm

Classification accuracy
on the test data

66.67% 66.67% 50% 100% 83.33%

Number of training
iterations

1 1 1 1 1

Figs. 8a and 8b shows part of the simulations of deSNN on EEG
data. The top figure shows a raster plot of input spikes of one
spatiotemporal EEG sample, the bottom gives the synaptic weights
information of deSNN before SDSP learning (initiated, using RO—
shown in blue) and after learning through SDSP (in green). It
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate(1-Specificity)

Tr
ue

 P
os

iti
ve

 R
at

e(
S

en
si

tiv
ity

)

Fig. 7b. A ROC classification curve on the test data for EEG case study data using a
frame based representation, BSA algorithm for spike transformation of EEG signals
and deSNNs for learning and classification.

can be seen that the synaptic weights of an output neuron for a
particular EEG pattern, change tremendously during the 500 ms
time of learning from w(0) to w(T), e.g. channels 19, 26 and 62.
This is obtained in the dynamic synapses of the deSNN, but cannot
be learned in the eSNN static synapses. That confirms again the
importance of both first spikes and their dynamic changes during
the time of a whole EEG pattern presentation.

To generalise, learning and capturing changes of input signals
in a set of dynamic synaptic weights is the key to the success of
the deSNN models for some specific tasks. Fig. 8a also illustrates
the feasibility of deSNN to handle high density of spikes in a
short temporal window which is the nature of EEG data. The spike
rate of this data is different from the spike rate of the Moving
Object Recognition data with AER. Using deSNNs for EEG data
classification produces significantly better results than a random
classification as it is illustrated with the ROC curve in Fig. 8b.

As EEG data is widely used to measure brain SSTD for a
wide range of applications, including medical applications and BCI
(Ferreira, Almeida, Georgieva, Tomé, & Silva, 2010; Isa, Fetz, &
Muller, 2009; Lalor et al., 2005; Neuper, Muller, Kubler, Birbaumer,
& Pfurtscheller, 2003; Tanaka, Matsunaga, &Wang, 2005;Wolpaw,
McFarland, & Vaughan, 2000), the use of deSNN could be further

N. Kasabov et al. / Neural Networks 41 (2013) 188–201 197
Fig. 8a. The figure shows an EEG SSTD spike raster plot (top figure; 64 input neurons on the y-axis over 50 ms real time on the x-axis—represented as 500 ms of simulation)
and the weight changes of a single output neuron from a deSNN model during learning (lower figure). The initial weights are obtained through RO learning and the final
weights—after the SDSP learning.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate(1-Specificity)

Tr
ue

 P
os

iti
ve

 R
at

e(
S

en
si

tiv
ity

)

Fig. 8b. A ROC classification curve on test data of the EEG classification case study
problemwhen using frame-based representation, BSA for a spike transformation of
EEG signals and deSNNs for learning and classification.

studied in more concrete scenarios depending on the specification
of each particular application.

7. Neuromorphic implementation of deSNN

Implementing deSNN on hardware SNN chips will enable the
development of autonomous machine learning systems for a wide
range of practical engineering applications (Indiveri & Horiuchi,
2011). The feasibility of implementing the deSNN model on some
particular SNN chips is discussed here.

The SDSP learning rule applied on the LIF model of a neuron
has already been successfully implemented in analogue VLSI
technology (Mitra et al., 2009) making it possible for a deSNN
model to be implemented on a chip. In this implementation,
the silicon synapses comprise bi-stability circuits for driving a
synaptic weight to one of two possible analogue values (either
potentiated or depressed). These circuits drive the synaptic-weight
voltage with a current that is superimposed on that generated
by the on-line spike-driven weight update mechanism and which
can be either positive or negative. If, on short time scales, the
synaptic weight is increased above a set threshold by the network
activity via the weight update learningmechanism, the bi-stability
circuits generate a constant weak positive current. In the absence
of activity (and hence learning) this current will drive the weight
towards its potentiated state. If the weight update mechanism
decreases the synaptic weight below the threshold, the bi-stability
circuits will generate a negative current that, in the absence
of spiking activity, will actively drive the weight towards the
analogue value, encoding its depressed state. The chip allows for
different types of dynamic synapses to be implemented, including
the Tsodyks’ model.

Another SNN chip that implements LIF model of a neuron is
the recently proposed programmable SRAM SNN chip (Moradi
& Indiveri, 2011). It is characterised by the following: 32 × 32
SRAM matrix of weights, each 5 bits (values between 0 and
31); 32 neurons of the adaptive, exponential IF model of a
neuron; each neuron has 2 excitatory and 2 inhibitory inputs to
which any of the 32 input dendrites (rows of weights) can be
connected; AER for input data, for changing the connectionweights
and for output data streams; does not have any learning rule
hardware implemented, so it allows to experiment with different
supervised and unsupervised learning rules; learning (changing of
the synaptic weights) is calculated outside the chip (in a computer,
connected to the chip) in an asynchronous manner (only synaptic
weights that need to change at the current time moment are
changed (calculated) and then loaded into the SRAM) applying
suitable learning rule and parameter settings.

The fact that modifying connection weights is done asyn-
chronously outside the chip and then the weights are loaded in the
SRAM allows for the deSNN learning algorithm to be implemented
on this chip. After an input is applied to the AER circuits, the output
from the neurons is produced and the deSNN learning algorithm
implemented off-chip is then used to change connection weights
accordingly. The new values of the weights are entered into the
SRAM also asynchronously.

deSNN is also implementable on other recently proposed
SNN chips of the same class, such as the digital IBM SNN chip
(Arthur et al., 2012) as well as on FPGA systems (Mitra et al.,
2009). Despite the fast, on-pass learning in the deSNN models, in
terms of large scale modelling of millions and billions of neurons
using the SpiNNaker SNN supercomputer system (Jin et al., 2010)
for simulation purposes would be appropriate, especially at the
level of parameter optimisation. Potentially, the deSNN can be
used to implement real-time sensory processing neuromorphic
architectures, which integrate audio-visual data, of the type shown
in Fig. 9.

8. Discussions, conclusions and further directions

The paper presents a new dynamic eSNN model, deSNN,
that combines rank-order (RO) and spike-time learning for

198 N. Kasabov et al. / Neural Networks 41 (2013) 188–201
Fig. 9. A schematic diagram of a multi-sensory AER processing neuromorphic
architecture to exploit the use of the deSNN learning method for practical
applications.

fast, on-line supervised or unsupervised learning, modelling and
pattern recognition of SSTD, also suitable for efficient hardware
implementation. The model is characterised by the following
features:

– one pass propagation of a SSTD during learning;
– evolving andmerging neurons and connections in an incremen-

tal, adaptive, ‘life-long’ learning mode;
– utilising dynamic synapses that are modifiable during both

learning and recall;
– storing ‘history’ of learning in terms of initial w(0) and final

w(T) connection weights in both learning and recall;
– the stored connection weights can be interpreted as clusters

of spatio-temporal patterns that can be represented as spatio-
temporal fuzzy rules, similar to the rules described in Soltic and
Kasabov (2010).

Themethod is illustrated on two different case studies—moving
object recognition using AER data, and EEG frame-based SSTD
recognition. Each of these case studies used noisy data due to
the character of the processes and the way data is collected. The
question how much robust to noise the method is (e.g. what is
the critical signal-to-noise ratio after which the method cannot be
efficient) is still to be investigated.

The deSNN model worked well on both small number of
inputs (e.g. 64) and large number of inputs (e.g. 7000). It was
efficient when used on both shorter input patterns (e.g. 500 ms)
and medium ones (several seconds), which temporal patterns
are typical for fast processes in nature and in the brain. Longer
temporal sequences, e.g.minutes,will be attempted in the future in
a comparative way using both single deSNN and using a reservoir
spatio-temporal SNN filter to capture some spatio-temporal
patterns from data before using deSNN as an output module to
classify the patterns of the reservoir (see: Kasabov, 2012a, 2012b;
Schliebs, Fiasch’e, & Kasabov, 2012; Schliebs, Hamed, & Kasabov,
2011; Verstraeten, Schrauwen, D’Haene, & Stroobandt, 2007).

There are still many open questions and issues for further
analysis, e.g.:

– What are the optimal parameter values for a particular task?
– Can the learning process be recovered from the w(0) and the

w(T) vectors?
– How to evaluate if neurons i and j should be merged based on

the weight vector pairs [wi(0),wi(T)] and [wj(0),wj(T)]?
– What type of dynamic synapse model would be more efficient
to use for a given task?

– Which spike should be considered as ‘first spike’ for RO
learning?

A major issue for the future development of deSNNmodels and
systems is the optimisation of its numerous parameters. One way
is to combine the local learning of synaptic weights with global
optimisation of SNN parameters. Two optimisation approaches
will be investigated, namely:

– Using evolutionary computation methods, including: genetic
algorithms, particle swarm optimisation, quantum inspired
evolutionary computation methods (Defoin-Platel, Schliebs, &
Kasabov, 2009; Nuzly, Kasabov, & Shamsuddin, 2010; Schliebs,
Defoin-Platel, Worner, & Kasabov, 2009; Schliebs, Kasabov, &
Defoin-Platel, 2010). These methods will explore the perfor-
mance of many deSNN in a population, each having different
parameter settings until a close to optimum performing model
can be found.

– Using gene regulatory network (GRN) models. Genes and pro-
teins define parameters for brain information processing that
has inspired the development of neurogenetic SNNmodels (Be-
nuskova & Kasabov, 2007; Kasabov, 2010; Kasabov, Benuskova,
& Wysoski, 2005; Kasabov, Schliebs, & Kojima, 2011). These
models operate at two levels—a GRN level of slow changes of
the gene parameter values and SNN level of fast information
processing that is affected by the gene parameter changes.

Genes control SNN parameters, but how are gene values
optimised? Nature has been continuously optimising genes for
millions of years now through evolution. Applying evolutionary
algorithms to optimise genes in GRN that control SNN parameters
for a specific problem represented as SSTD is a next step in the
development of this model.

A further study on the deSNN model will enable more effi-
cient real time applications such as: EEG pattern recognition for
BCI (Ferreira et al., 2010; Lalor et al., 2005); fMRI pattern recog-
nition (Sona, Veeramachaneni, Olivetti, & Avesani, 2007); neuro-
rehabilitation robotics (Wang et al., 2012), neuro-prosthetics (Isa
et al., 2009); cognitive robots (Bellas, Duro, Faiña, & Souto, 2010);
personalised modelling (Kasabov & Hu, 2010) for the prognosis of
fatal events such as stroke (Barker-Collo, Feigin, Parag, Lawes, & Se-
nior, 2010) and degenerative progression of brain disease, such as
AD (Kasabov, 2013; Kasabov et al., 2011).

As STDP learning is now implementable on memristor type
electronics and fast image processing hardware (Thorpe, 2012), it
makes it feasible to attempt implementation of the deSNN model
on such hardware for future fast-, one-pass-, on-line-, real time
spatio-temporal pattern recognition tasks.

Acknowledgements

This paper is supported by the EU FP7 Marie Curie project
EvoSpike PIIF-GA-2010-272006, hosted by the Institute for Neu-
roinformatics at ETH/UZH Zurich (http://ncs.ethz.ch/projects/
evospike), by the EU ERC Grant ‘‘neuroP’’ (257219), and also by the
Knowledge Engineering and Discovery Research Institute (KEDRI,
http://www.kedri.info) of the Auckland University of Technology.
We acknowledge the discussions with Tobi Delbruck and Fabio
Stefanini from INI, Stefan Schliebs and Ammar Mohemmed from
KEDRI, and the constructive suggestions by the reviewers of this
paper and the organisers of the special issue.

http://ncs.ethz.ch/projects/evospike
http://ncs.ethz.ch/projects/evospike
http://ncs.ethz.ch/projects/evospike
http://ncs.ethz.ch/projects/evospike
http://ncs.ethz.ch/projects/evospike
http://ncs.ethz.ch/projects/evospike
http://www.kedri.info

N. Kasabov et al. / Neural Networks 41 (2013) 188–201 199
Appendix. Python code of deSNN for the simulation of Exam-
ple 2

###
Authors: N.Nuntallid and K.Dhoble, KEDRI, AUT, NZ 2012
#(www.kedri.info)
###
from pylab import *
from brian import *
from brian.utils.progressreporting import ProgressReporter
from time import time
from core.learner import *
from core.utils import *
import os
import operator
###
Parameters and constants for the training set
###
defaultclock.dt= 0.2 * ms
Basic neuron and synapse parameters
tau_exc = 2*ms # excitatory synapse time constant
tau_exc_inh = 0.2*ms # feedforward connection time constant
tau_inh = 5*ms # inhibitory synapse time constant
tau_mem = 20*ms # neuron time constant
El = 20*mV # membrane leak
Vthr = 800*mV # spike threshold
Vrst = 0*mV # reset value
winh = 0.20*volt # fixed inhibitory weight
wexc = 0.40*volt # fixed excitatory weight
#wexc_inh = 1 * volt # fixed feedforward excitatory weight
UT = 25*mV # thermal voltage
refr = 4*ms # refractory period
Learning related parameters
Vthm = 0.75*Vthr #5*Vthr/8. # Up/Down weight jumps
tau_ca = 5*tau_mem # Calcium variable time constant
wca = 50 * mV # Steady-state asymptote for Calcium variable
th_low = 1.7*wca # Stop-learning threshold 1 (stop if Vca<thk1)
th_down = 2.2*wca # Stop-learning threshold 2 (stop LTD if Vca>thk2)
th_up = 8*wca–wca # Stop-learning threshold 2 (stop LTP if Vca>thk3)
tau_p = 9* ms # Plastic synapse (NMDA) time constant
wp_hi = 0.6* volt # Plastic synapse high value
wp_lo = 0 * mvolt # Plastic synapse low value
wp_drift = .25 # Bi-stability drift
wp_thr= (wp_hi - wp_lo)/2.+wp_lo # Drift direction threshold
wp_delta = 0.12*wp_hi # Delta Weight
###########Equations#########
eqs_neurons = Equations(’’’
dv/dt=(El-v+ge+ge_p+ge_inh-gi_out)*(1./tau_mem): volt
dge_p/dt=-ge_p*(1./tau_p): volt
dge/dt=-ge*(1./tau_exc): volt
dgi/dt=-gi*(1./tau_inh): volt
dge_inh/dt=-ge_inh*(1./tau_exc_inh): volt
gi_out = gi*(1-exp(-v/UT)): volt # shunting inhibition
’’’)
eqs_reset = ’’’
v=Vrst
’’’
#############Architecture of the deSNN ##############
input_size = 5
neurons_class = 1 #Number of neurons in each class
number_class = 2 #Number of class in the output layer
output_size = number_class*neurons_class
out = []
#Connection weights between the input layer and the output layer
SIM_TIME = 8*ms
seed(1)
mod=0.8
######## Read all files from defined directory path #######
path = ‘sdsp_testweight/’ ## directory path of the input patterns (stimuli)
listing = os.listdir(path)
Get data Files
for infile in listing:
print ‘‘Reading from file: ‘‘ + infile,"\n###################’’
##———Spiketrain stimulus from file——-##
spiketimes=inputfile_to_spikes(path+infile)
########################
s=sorted(spiketimes, key=operator.itemgetter(1))
rankW=zeros((input_size,1))
for i in xrange(len(s)):
rankW[s[i][0]][0]=float(mod**i)
wp0=rankW
print ‘‘Rank Order Weights:\n’’,wp0
##—Convert imported/selected spike trains to Brian (spike train) format–
##
inputSpikeTrain = SpikeGeneratorGroup(input_size, spiketimes)
net = Network(inputSpikeTrain)
net.reinit()
#———— Neurons —————#
Create Output layer Neurons
neurons = NeuronGroup(N=output_size, model= eqs_neurons, thresh-
old=Vthr, reset= Vrst)#, refractory=refr) # Output layer
Create Inhibitory neuron group
inh_neurons = NeuronGroup(N=output_size, model = eqs_neurons, thresh-
old = Vthr, reset = Vrst)
#———— Connections ———–#
wexc_inh = (0.8+(rand(len(inputSpikeTrain), len(inh_neurons))*0.5)) *volt
c_inter = Connection(inputSpikeTrain, inh_neurons, ‘ge_inh’, structure =
‘dense’)
c_inter.connect(inputSpikeTrain, inh_neurons, wexc_inh)
c_inh = Connection(inh_neurons, neurons, ‘gi’)
c_inh.connect_full(inh_neurons, neurons, weight = winh)
Connection between the input layer and the output layer
synapses = Connection(inputSpikeTrain, neurons, ‘ge_p’, structure =
’dynamic’)
synapses.connect(inputSpikeTrain, neurons, wp0)
STDP equation
eqs_stdp=’’’
x: 1 # fictional presynaptic variable
dC/dt = -C/tau_ca: volt # your postsynaptic calcium variable
V: volt # a copy of the postsynaptic v
’’’
stdp=STDP(synapses, eqs=eqs_stdp, pre=’w += (V>Vthm)*
(C<th_up)*(th_low<C)*wp_delta - (V<=Vthm)*(C<th_down)*
(th_low<C)*wp_delta; x’, post=’C += wca; V’, wmax=wp_hi)
stdp.post_group.V = linked_var(neurons,’v’)
#————–record spike activities——————#
spikes = SpikeMonitor(inputSpikeTrain, record=True)
outspikes = SpikeMonitor(neurons, record=True)
M = StateMonitor(neurons,’v’,record=0)
###
@network_operation
def drift_equation():
synapses.W = DenseConnectionMatrix(bistable_drift
(synapses.W.todense(), len(inputSpikeTrain), len(neurons)))
def bistable_drift(w, a, b):
w = w.flatten()

200 N. Kasabov et al. / Neural Networks 41 (2013) 188–201
up_idx = w>wp_thr
down_idx = w<=wp_thr
w[up_idx] += wp_drift*defaultclock.dt
w[w>wp_hi] = wp_hi
w[down_idx] -= wp_drift*defaultclock.dt
w[w<wp_lo] = wp_lo
return w.reshape(a,b)
print ‘‘SDSP Weights: \n’’,synapses.W
run(SIM_TIME)

References

Arthur, J. V., Merolla, P. A., Akopyan, F., Alvarez, R., Cassidy, A., Chandra, A., et al.
(2012). Building block of a programmable neuromorphic substrate: a digital
neurosynaptic core. In Proc. IJCNN 2012. Brisbane: IEEE Press.

Barker-Collo, S., Feigin, V. L., Parag, V., Lawes, C. M. M., & Senior, H. (2010). Auckland
stroke outcomes study. Neurology, 75(18), 1608–1616.

Belatreche, A., Maguire, L. P., & McGinnity, M. (2006). Advances in design and
application of spiking neural networks. Soft Computing , 11(3), 239–248.

Bellas, F., Duro, R. J., Faiña, A., & Souto, D. (2010). MDB: artificial evolution in a
cognitive architecture for real robots. IEEE Transactions on Autonomous Mental
Development , 2, 340–354.

Benuskova, L., & Kasabov, N. (2007). Computational neurogenetic modelling. New
York: Springer, p. 290.

Bichler, O., Ouerlioz, D., Thorpe, S., Bourgoin, J.-P., &Gamrat, C. (2011). Unsupervised
features extraction from asynchronous silicon retina spike-timing-dependent
plasticity. In Proc. IJCNN 2011 (pp. 859–866). IEEE Press.

Bohte, S. M. (2004). The evidence for neural information processing with precise
spike-times: a survey. Natural Computing , 3.

Brader, J., Senn,W., & Fusi, S. (2007). Learning real-world stimuli in a neural network
with spike-driven synaptic dynamics. Neural Computation, 19(11), 2881–2912.

Brette, R., et al. (2007). Simulation of networks of spiking neurons: a review of tools
and strategies. Journal of Computational Neuroscience, 23, 349–398.

Defoin-Platel, M., Schliebs, S., & Kasabov, N. (2009). Quantum-inspired evolutionary
algorithm: a multi-model EDA. IEEE Transactions on Evolutionary Computation,
13(6), 1218–1232. Dec..

Delbruck, T. (2007). jAER open source project. http://jaer.wiki.sourceforge.net.
Dhoble, K., Nuntalid, N., Indivery, G., & Kasabov, N. (2012). On-line spatiotemporal

pattern recognition with evolving spiking neural networks utilising address
event representation, rank oder- and temporal spike learning. In Proc. WCCI
2012 (pp. 554–560). IEEE Press.

Ferreira, A., Almeida, C., Georgieva, P., Tomé, A., & Silva, F. (2010). Advances in EEG-
based biometry. In A. Campilho, & M. Kamel (Eds.), LNCS: vol. 6112. ICIAR 2010
(pp. 287–295). Springer.

Fusi, S., Annunziato, M., Badoni, D., Salamon, A., & Amit, (2000). Spike-
driven synaptic plasticity: theory, simulation, VLSI implementation. Neural
Computation, 12(10), 2227–2258.

Gerstner, W. (1995). Time structure of the activity of neural network models.
Physical Review, 51, 738–758.

Guyonneau, R., VanRullen, R., & Thorpe, S. (2005). Neurons tune to the earliest spikes
through STDP. Neural Computation, 17(4), 859–879. April 2005.

Hebb, D. (1949). The organization of behavior. New York: John Wiley and Sons.
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. Journal of
Physiology, 117, 500–544.

Indiveri, G., Chicca, E., & Douglas, R. J. (2009). Artificial cognitive systems: from VLSI
networks of spiking neurons to neuromorphic cognition. Cognitive Computation,
1(2), 119–127.

Indiveri, G., & Horiuchi, T. (2011). Frontiers in neuromorphic engineering. Frontiers
in Neuroscience, 5, 118.

Indiveri, G., et al. (2011). Neuromorphic silicon neuron circuits. Frontiers in
Neuroscience, 5, 1–23.

Indiveri, G., Stefanini, F., & Chicca, E. (2010). Spike-based learningwith a generalized
integrate and fire silicon neuron. In 2010 IEEE int. symp. circuits and syst., ISCAS
2010 (pp. 1951–1954). Paris, May 30–June 02.

Isa, T., Fetz, E. E., & Muller, K. (2009). Recent advances in brain-machine interfaces.
Neural Networks, 22(9), 1201–1202. Brain-Machine Interface.

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE
Transactions on Neural Networks, 15(5), 1063–1070.

Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural
Computation, 18, 245–282.

Jin, X., Lujan, M., Plana, L. A., Davies, S., Temple, S., & Furber, S. (2010). Modelling
spiking neural networks on SpiNNaker. Computing in Science & Engineering ,
12(5), 91–97. ISSN: 1521-961.

Kasabov, N. (2001). Evolving fuzzy neural networks for on-line super-
vised/unsupervised, knowledge-based learning. IEEE Transactions on Systems,
Man and Cybernetics, Part B (Cybernetics), 31(6), 902–918.

Kasabov, N. (2002). Evolving connectionist systems: methods and applications
in bioinformatics, brain study and intelligent machines. London, New York,
Heidelberg: Springer Verlag.

Kasabov, N. (2007). Evolving connectionist systems — The knowledge engineering
approach. Springer.
Kasabov, N. (2010). To spike or not to spike: a probabilistic spiking neuron model.
Neural Networks, 23(1), 16–19.

Kasabov, (2012a). Evolving spiking neural networks and neurogenetic systems for
spatio- and spectro-temporal data modelling and pattern recognition. In J. Liu,
et al. (Eds.), LNCS: vol. 7311. IEEE WCCI 2012 (pp. 234–260). Berlin, Heidelberg:
Springer-Verlag.

Kasabov, N. (2012b). NeuCube EvoSpike architecture for spatio-temporal modelling
and pattern recognition of brain signals. In Mana, Schwenker, & Trentin (Eds.),
LNAI: vol. 7477. ANNPR (pp. 225–243). Springer.

Kasabov, N. (Ed.) (2013). The springer handbook of bio- and neuroinformatics.
Springer.

Kasabov, N., Benuskova, L., & Wysoski, S. (2005). A computational neurogenetic
model of a spiking neuron. In IJCNN 2005 conf. proc. vol. 1 (pp. 446–451). IEEE
Press.

Kasabov, N., & Hu, Y. (2010). Integrated optimisation method for personalised
modelling and case study applications. International Journal of Functional
Informatics and Personalised Medicine, 3(3), 236–256.

Kasabov, N., Schliebs, R., & Kojima, H. (2011). Probabilistic computational
neurogenetic framework: from modelling cognitive systems to alzheimer’s
disease. IEEE Transactions on Autonomous Mental Development , 3(4), 300–311.

Kasabov, N., & Song, Q. (2002). DENFIS: dynamic, evolving neural-fuzzy inference
systems and its application for time-series prediction. IEEE Transactions on Fuzzy
Systems, 10, 144–154.

Kistler, G., & Gerstner,W. (2002). Spiking neuronmodels—single neurons, populations,
plasticity. Cambridge Univ. Press.

Lalor, E., Kelly, S., Finucane, C., Burke, R., Smith, R., Reilly, R., et al. (2005). Steady-
state vep-based brain–computer interface control in an immersive 3D gaming
environment. EURASIP Journal on Applied Signal Processing , 2005, 3156–3164.

Lichtsteiner, P., &Delbruck, T. (2005). A 64×64AER logarithmic temporal derivative
silicon retina. Research in Microelectronics and Electronics, 2, 202–205.

Maass, W., & Markram, H. (2002). Synapses as dynamic memory buffers. Neural
Networks, 15(2), 155–161.

Maass, W., Natschlaeger, T., & Markram, H. (2002). Real-time computing without
stable states: a new framework for neural computation based on perturbations.
Neural Computation, 14(11), 2531–2560.

Maass, W., & Sontag, E. D. (2000). Neural systems as nonlinear filters. Neural
Computation, 12(8), 1743–1772.

Maass, W., & Zador, A. M. (1999). Computing and learning with dynamic synapses.
In Pulsed neural networks (pp. 321–336). MIT Press.

Masquelier, T., Guyonneau, R., & Thorpe, S. J. (2008). Spike timing dependent
plasticity finds the start of repeating patterns in continuous spike trains. PLoS
ONE, 3(1), e1377.

Masquelier, T., Guyonneau, R., & Thorpe, S. J. (2009). Competitive STDP-based spike
pattern learning. Neural Computation, 21(5), 1259–1276.

Mehrtash, N., Jung, D., & Klar, H. (2003). Image pre-processing with dynamic
synapses. Neural Computing & Applications, 12, 33–41
http://dx.doi.org/10.1007/s00521-030-0371-2.

Mitra, S., Fusi, S., & Indiveri, G. (2009). Real-time classification of complex
patterns using spike-based learning in neuromorphic VLSI. IEEE Transactions on
Biomedical Circuits and Systems, 3(1), 32–42.

Moradi, S., & Indiveri, G. (2011). A VLSI network of spiking neurons with an
asynchronous static random access memory. In Biomedical circuits and systems
conference BIOCAS 2011.

Morrison, A., Diesmann, M., & Gerstner, W. (2008). Phenomenological models of
synaptic plasticity based on spike timing. Biological Cybernetics, 98, 459–478.

Namarvar, H., Liaw, J.-S., & Berger, T. (2001). A newdynamic synapse neural network
for speech recognition. In Proc. IJCNN’01. int. joint conf. on neural networks, 2001.

Natschläger, T., &Maass,W. (2002). Spiking neurons and the induction of finite state
machines. Theoretical Computer Science—Natural Computing , 287(1), 251–265.

Neuper, C., Muller, G., Kubler, A., Birbaumer, N., & Pfurtscheller, G. (2003). Clinical
application of an EEG -based brain–computer interface: a case study in a patient
with severe motor impairment. Clinical Neurophysiology, 114(3), 399–409.

Nuntalid, N., Dhoble, K., & Kasabov, N. (2011). EEG classification with BSA spike
encoding algorithm and evolving probabilistic spiking neural network. In LNCS:
vol. 7062. Proc. 18th int. conf. on neural information processing, ICONIP, 2011,
Shanghai, China (pp. 451–460). Heidelberg: Springer.

Nuzly, H., Kasabov, N., & Shamsuddin, S. (2010). Probabilistic evolving spiking
neural network optimization using dynamic quantum inspired particle swarm
optimization. Australian Journal of Intelligent Information Processing Systems,
11(1).

Schliebs, S., Defoin-Platel, M., Worner, S., & Kasabov, N. (2009). Integrated feature
and parameter optimization for evolving spiking neural networks: exploring
heterogeneous probabilistic models. Neural Networks, 22, 623–632.

Schliebs, S., Fiasch’e, M., & Kasabov, N. (2012). Constructing robust liquid state
machines to process highly variable data streams. In A. Vila, et al. (Eds.), LNCS:
vol. 7552. ICANN 2012 (pp. 604–611). Springer.

Schliebs, S., Hamed, H. N. A., & Kasabov, N. (2011). A reservoir-based evolving
spiking neural network for on-line spatio-temporal pattern learning and
recognition, Neural Information Processing. In LNCS: vol. 7063. Proc. 18th int.
conf. neural information processing , ICONIP, (pp. 160–168). Shanghai, China,
Heidelberg: Springer.

Schliebs, S., & Kasabov, N. (2012). Evolving spiking neural networks: a survey, evolving
systems. Springer.

Schliebs, S., Kasabov, N., & Defoin-Platel, M. (2010). On the probabilistic
optimization of spiking neural networks. International Journal of Neural Systems,
20(6), 481–500.

http://jaer.wiki.sourceforge.net
http://dx.doi.org/doi:10.1007/s00521-030-0371-2

N. Kasabov et al. / Neural Networks 41 (2013) 188–201 201
Schrauwen, B., & Van Campenhout, J. (2003). BSA—a fast and accurate spike
train encoding scheme. In 2003 Proc. int. joint conf. on neural networks. Vol. 4
(pp. 2825–2830). IEEE.

Soltic, S., & Kasabov, N. (2010). Knowledge extraction from evolving spiking neural
networks with rank order population coding. International Journal of Neural
Systems, 20(6), 437–445.

Sona, D., Veeramachaneni, S., Olivetti, E., & Avesani, P. (2007). Inferring cognition
from fMRI brain images. In J. M. de Sá, L. A. Alexandre, W. Duch, & D. P. Mandic
(Eds.), LNCS: vol. 4669. ICANN 2007 (pp. 869–878). Springer.

Song, S., Miller, K., Abbott, L., et al. (2000). Competitive Hebbian learning through
spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3, 919–926.

Tanaka, K., Matsunaga, K., & Wang, H. (2005). Electroencephalogram-based control
of an electric wheelchair. IEEE Transactions on Robotics, 21(4), 762–766.

Thorpe, S. J. (2009). The speed of categorization in the human visual system.Neuron,
62(2), 168–170.

Thorpe, S. J. (2012). Spike-based image processing: can we reproduce biological
vision in hardware. Lecture Notes in Computer Science, vol. 7583, 516–521.

Thorpe, S.J., Brilhault, A., & Perez-Carrasco, J.A. (2010). Suggestions for a biologically
inspired spiking retina using order-based coding. In IEEE international
symposium on circuits and syst. (pp. 265–268).

Thorpe, S., & Gautrais, J. (1998). Rank order coding. Computational Neuroscience, 13,
113–119.
Thorpe, S., Guyonneau, R., Guilbaud, N., Allegraud, J. M., & Vanrullen, R.
(2004). SpikeNet: real-time visual processing with one spike per neuron.
Neurocomputing , 58–60, 857–864.

Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic
synapses. Neural Computation, 10(4), 821–835.

van Schaik, A., & Shih-Chii Liu, L. (2005). AER EAR: a matched silicon cochlea pair
with address event representation interface. In Proc. of ISCAS—IEEE int. symp. on
circuits and systems, Vol. 5 (pp. 4213–4216). May.

Verstraeten, D., Schrauwen, B., D’Haene, M., & Stroobandt, D. (2007). An
experimental unification of reservoir computing methods. Neural Networks,
20(3), 391–403.

Wang, X., Hou, Z.-G., Tan, M., Wang, Y., Lv, F., & Kasabov, N. (2012). Mobile robots’
target—reaching controller based on spiking neural networks. In LNCS, Proc.
ICONIP 2012. Qatar: Springer.

Watts, M. (2009). A decade of Kasabov’s evolving connectionist systems: a review.
IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and
Reviews, 39(3), 253–269.

Wolpaw, J., McFarland, D., & Vaughan, T. (2000). Brain–computer interface research
at the wadsworth center. IEEE Transactions on Rehabilitation Engineering , 8(2),
222–226.

Wysoski, S., Benuskova, L., & Kasabov, N. (2010). Evolving spiking neural networks
for audiovisual information processing. Neural Networks, 23(7), 819–835.

	Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition
	Introduction
	Evolving connectionist systems (ECOS) and evolving spiking neural networks (eSNN)
	ECOS
	Evolving spiking neural networks (eSNN)

	Spike-time learning methods
	The spike time dependent plasticity (STDP) learning rule
	The spike driven synaptic plasticity (SDSP) learning rule
	Dynamic synapses

	Dynamic evolving SNN (deSNN)
	deSNN for moving object recognition with AER
	deSNN for EEG pattern recognition with frame-based representation and BSA spike transformation algorithm
	Neuromorphic implementation of deSNN
	Discussions, conclusions and further directions
	Acknowledgements
	Python code of deSNN for the simulation of Example 2
	References

