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Abstract—The paper proposes a novel hierarchical recurrent
neural network architecture for on-line classification and inter-
pretation of EEG data. It incorporates two dynamic pools of
neurons - one based on NeuCube three dimensional structure
of spiking neurons connected via spike-timing dependent plastic
synapses and another Echo state neural network (ESN) reservoir
of sparsely connected hyperbolic tangent neurons that is able to
learn on-line to classify the extracted from the Cube spike-rate
features. The aim of the work was to interpret and classify in a
brain-inspired manner dynamic spatio-temporal brain EEG data.
The achieved results demonstrate improved classification accu-
racy on a benchmark data set along with a good interpretability
of the data. In future, the proposed method can be used for
classification of other brain spatio-temporal data, such as ECOG
and fMRI.

Index Terms—SNN, ESN, NeuCube, EEG, classification, on-
line learning, spiking neurons

I. INTRODUCTION

Electroencephalography (EEG) is a method to record the
electrical activity of the brain. It is typically non-invasive,
with the EEG electrodes placed along the scalp. The measured
in this way signals represent the postsynaptic potentials of
pyramidal neurons in the cortex. Since the electrical activity
in the brain surface originates in the deeper brain ares that do
not contribute directly to an EEG recording, their influence
could be assessed accounting for the electrodes orientation
and distance to the source of the activity.

By far EEG has been applied to numerous domains from
brain–computer interface [], emotion [], cognition [], brain
diseases [] etc. Through the years the EEG data processing
methodology has evolved from simple methods, such as mean
and amplitude comparison to complicated methods, such as
connectivity topology and deep learning [12]. In particular,

deep learning exhibits better performance in EEG classifica-
tion in comparison with the conventional methods.

In order to exploit EEG data for analyses the first step
traditionally is to ”decode” them [25], [26] or to extract a
range of signal properties referred to as ”features” which
are then utilized for detection or classification purposes [19].
The analyses outcome is largely influenced by the quality of
extracted features. A recent trend in EEG features extraction
and processing exploits recurrent neural networks [24] and
especially a member of reservoir family - fast on-line trainable
Echo state networks (ESN) [17], [18], [20]–[23].

Nevertheless, accurate on-line classification and explanation
of dynamic spatio-temporal brain data, such as EEG is still
an open problem. While there are many methods introduced
for brain data classification, most of them lack explainability
in relation to the measured brain functions as spatio-temporal
patterns. Accounting for spatial brain structure in the design of
RNN decoders or feature extractor became a natural direction
of work nowadays [11]. Recently developed brain-inspired
spiking neural network (SNN) models, such as NeuCube [4],
[13]–[16], demonstrated a good classification accuracy and
excellent explanation of the spatio-temporal patterns learned
from spatio-temporal brain data, such as EEG and fMRI [5].

This paper explores the integration of the Cube module with
an ESN classifier, aiming at improved classification accuracy
in an on-line learning mode. The proposed method makes use
of two types of information contained in the data, spike-timing,
learned in an unsupervised mode in the Cube, and spike-rate
or spiking frequency features, captured and classified in the
ESN in an on-line mode.

Further the paper is organized as follows: section II presents
briefly NeuCube and ESN structures and the proposed hi-
erarchical architecture NeuCube-ESN for EEG on-line clas-



sification; section III presents the classification results on a
benchmark example of EEG data for wrist movement and
compares the achieved accuracy with NeuCube classification
results from []; finally the concluding remarks summarize
the main achievements in the presented work and points the
directions for future work.

II. NEUCUBE - ESN BRAIN DATA ARCHITECTURE

A. NeuCube Structure

The NeuCube architecture is an open one, allowing for new
algorithms to be explored for encoding, learning, classification,
regression. It consists of three parts [5]:

• Data encoding part, where input streaming data is en-
coded into spike sequences using a suitable algorithm
[8].

• A 3D Cube structure of spiking neurons, where every
neuron has a 3D spatial coordinates defined through
the use of brain-template, such as Talairach or MNI.
Initial connections were generated randomly based on the
distances between each two neurons.

• SNN classifiers of evolving spiking neuron networks
(eSNN) or dynamic evolving spiking neuron networks
(deSNN) [6] are used to separate the outputs of NeuCube
into classes.

After encoding of the spatio-temporal EEG data into se-
quences of spikes (spike-time information), the Cube, struc-
tured according to a brain template, receives as input EEG
recordings at neurons corresponding to the electrodes’ posi-
tions on the scull. As a result all neurons in the Cube generate
spike trains whose dynamics depends on the input signal as
well as on both the connectivity within the Cube (small world
connectivity at the beginning) and on the spike time dependent
plasticity of the connections (synapses). Finally the output
classifier takes the Cube spike trains as classification features.

B. ESN Structure

Echo state networks (ESN) belong to a novel and rapidly
developing family of reservoir computing approaches [1]–[3]
whose aim was development of fast trainable recurrent neural
network (RNN) architectures able to approximate nonlinear
time series dependencies. The detailed structure of an ESN
reservoir is shown on Fig 1.

Fig. 1. ESN reservoir structure.

It incorporates a pool of neurons with sigmoid activation
function fres (usually the hyperbolic tangent) that has ran-
domly generated recurrent connection weights. The reservoir
state R(k) for the current time instant k depends both on its
previous state R(k−1) and the current input in(k) as follows:

R(k) = (1−a)R(k)+afres(W inin(k)+W resR(k−1)) (1)

Here W in is the matrix of input to reservoir connection
weights that are randomly generated; W res is the internal
reservoir connection weight matrix that is sparse and also ran-
domly generated according to recipes given by [2], [3], namely
its spectral radius has be below 1; a ∈ [0, 1] is leaking rate
parameter. The ESN output out(k) is calculated as a function
fout (usually identity function) of the linear combination of
the current reservoir states R(k) or of concatenation of the
input and reservoir states [R(k) in(k)] weighted by the output
weight matrix W out:

out(k) = fout(W out[R(k) in(k)]) (2)

The ESN hyper parameters that are subject of manual
tuning, usually via grid search, are the reservoir size (number
of neurons), reservoir connection matrix sparsity and spectral
radius and leaking rate. Additionally input and output scaling
could be included.

The only trainable parameters of ESN are the output weights
W out. In case of identity output function the least squares
method is applied to train the ESN in a single iteration. For the
aims of on-line training the recursive version of least squares
(RLS) can be applied too [1].

C. NeuCube-ESN Brain Data Classifier

The proposed novel brain data classifier called NeuCube-
ESN is a hierarchical RNN composed by two recurrent archi-
tectures - a brain inspired NeuCube, that is a spatio-temporal
structure of SNN neurons and a fast trainable ESN as a
nonlinear time series classifier. The overall structure is shown
on Fig. 2.

The following algorithm depicts the functionality of the
proposed classifier:

• A 3D SNN Cube is initialised by defining the size of
the Cube of N neurons and their 3D locations, including
positions of EEG electordes.

• In contrast to NeuCube approach, here the EEG data is
scaled and fed into the Cube as generating currents into
neurons corresponding to electrodes positions.

• During the input of each EEG sample unsupervised STDP
learning rule is applied on the Cube and spiking activity
of all neurons was recorded. For a given time window
D (e.g. 100 ms) the spiking frequency of each of the N
neurons in the Cube is calculated. Thus for duration of a
sample EEG record of T ms a new time series of Cube
firing rates is extracted as feature vector of size T/D×N .

• The output classifier is an ESN reservoir with M neurons.
It receives generated by Cube time series feature per



Fig. 2. Proposed NeuCube - ESN structure.

given EEG sample. The achieved reservoir state after
presentation of each EEG sample feature vector was send
to its readout and the output weights were adjusted to
predict the correct EEG class. The training was done via
RLS in on-line mode.

The hyper-parameters parameters of the Cube and the
ESN, e.g. refractory period and membrane threshold potential
of spiking neurons, STDP learning rate, size, sparsity and
leakage rate of ESN reservoir, have to be optimised for a best
classification accuracy.

The connectivity obtained in the Cube SNN after presenta-
tion of each EEG sample can be analysed as spatio-temporal
patterns to better understand each class of the brain activity
captured as EEG data.

III. RESULTS

The benchmark data used here to illustrate the proposed
method is taken from [10]. The EEG data of 14 channels
Emotiv measuring device were collected for T = 1000 ms
with sampling frequency of 128Hz. The test subject is asked
to perform three different types of wrist movement - up, down
and straight - that are separated into three EEG classes and
20 examples per class are collected, making all number of
samples 60.

The 3D structure of the used Cube from the NeuCube
architecture [4], [5] is shown on Fig. 2. The blue dots are
neurons positions while the red dots mark the EEG electrodes
positions as input neurons. The Cube is designed according
to the scalable Talairach atlas, in this cases using N = 1471
neurons [7]. The location of the input neurons, corresponding
to the used in this case 14 EEG channels, is defined following
the 10-20 EEG location system.

The Cube initial randomly generated connectivity is shown
on Fig. 3. The red lines correspond to excitatory connec-
tions while the blue ones - to the inhibitory connections.
Small-world connectivity method is used to derive the initial
connections in the Cube, where the closer two neurons are
in the 3D space, the higher the probability of them to be
connected. Initial connections are assigned small weights, with
80% positive and 20% negative values.

The Cube is simulated in NEST Simulator, version 3.3 [27],
using leaky integrate-and-fire neuron model with the default

parameters: tref = 2 ms, Vth = −55 mV and STDP synapses
with learning rate λ = 0.01.

The ESN was implemented in Python.
Fig. 4 shows connectivity changed after presentation of one

EEG recording example. It is observed that the connections
strength as well as the number of excitatory connections
increased.

Fig. 3. Brain template initial connections.

Fig. 4. Brain template of connections after presenting only one example of
EEG data

For the defined size of time window D = 100 ms the
extracted time series features per EEG sample are of 1471×10
dimension.



In order to tune ESN classifier hyper-parameters the exhaus-
tive grid search was performed. The best results were achieved
with: reservoir size M = 4500, leaking rate a = 0.8 and
reservoir connectivity weight matrix sparsity 0.6.

Since the ESN output is continuous value in range [−1, 1],
for the aim of classification the target values corresponding to
three classes were −1, 0 and +1 respectively.

Fifty percents of data were used for training and the rest for
testing of the classifier accuracy. K-fold cross validation was
performed with k = 6.

Figure 5 shows test data vs classification result. The
achieved mean test MSE from all 6 folds was about 0.00329
which demonstrates a perfect classification. Having in mind
that the ESN output values close enough to the target one will
result in correct classification, e.g. −0.995 will be rounded to
−1, we can say that our classifier achieved 100% accuracy.

Fig. 5. Test data vs ESN predictions.

The reported in [10] accuracy on test data for the same
benchmark EEG data set using standard NeuCube with deSNN
classifier is 86.67%.

IV. CONCLUSION

The classification accuracy, demonstrated on the case study
benchmark EEG data and shown in Fig. 5 is close to 100%.
This is significantly better then the accuracy achieved in
NeuCube when using deSNN as a classifier (86.67%). The
reason is the integration of both spike-time and spike-rate
information extracted from the data, that better represents the
complexity of the EEG data. The Cube learns the spike-timing
information, while the ESN - the rate/frequency information
from data, captured in the neurons of the Cube. In a the
previous use of NeuCube on the benchmark data, the deSNN
classifier was used [6] that uses spike-time information for
classification, which type of information was used also in the
Cube.

Future work is planned of optimising the parameters of both
the Cube and the ESN so that the model can be implemented
on a neuromorphic hardware chip. The team also plans to

apply this method on other spatio-temporal brain data, such
as ECOG and fMRI.
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