“111 Centre on Biological Computing and Atrtificial Intelligence”, Dalian University (DLU)
Cognitive Systems Engineering

Course organiser: Prof. Shihua Zhou

Course presenter

Prof Nikola Kasabov

Visiting Professor at Dalian University
Life FIEEE, FRSNZ, FINNS, DVF RAE UK
Founding Director KEDRI
Professor, Auckland University of Technology, NZ
George Moore Chair/Professor, Ulster University, UK
Honorary Professor, University of Auckland NZ , Peking University China
Visiting Professor [ICT/Bulgarian Academy of Sciences and Teesside University UK
Doctor Honoris Causa Obuda University Budapest
Director, Knowledge Engineering Consulting Ltd (https://www.knowledgeengineering.ai)

Assistant

Doct Ms Iman AbouHassan
iabouhassan@tu-sofia.bg
abouhassan.iman@gmail.com

http://www.knowledgeengineering.ai/china

mailto:iabouhassan@tu-sofia.bg
mailto:abouhassan.iman@gmail.com
mailto:nkasabov@aut.ac.nz

Research Course DLU 2024
Cognitive System Engineering
Cognitive systems (CogSys) are software-hardware systems that have their structure and
functionality based on principles of information processing in the human brain. They are
part of Al, but Al includes also other systems that manifest cognitive behaviour, such as

speech and image recognition, learning and reasoning, but using other methods , such as
statistical, empirical, abstract logic, etc.

The course is by research papers.

Every topic will include:

1. Topic/task/problem specification

2. Previously published methods for solving the problem

3. Description of the method and in the paper under discussion

4. Software implementation, experimental results and discoveries

5. Applications

6. Future work to be done for this problem and questions for individual work

Expected results:

1. Students obtain new knowledge and skills in the area of CogSys for Al applications.

2. Students can learn to take a critical approach to the existing methods and systems.

3. Students can get confidence that they can suggest new methods and to publish them in
good journals.

Additional materials: https://www.knowledgeengineering.ai/china
ZOOM link for all lectures:
https://us05web.zoom.us/j/4658730662?pwd=eFNOeHRCN304K0FaZ0lqQmN1UUgydz09

https://www.knowledgeengineering.ai/china

mailto:nkasabov@aut.ac.nz
https://www.knowledgeengineering.ai/china
https://www.knowledgeengineering.ai/china

CogSysEn: Lecture Topics

1. Introduction to the course
Part | : Learning systems
2. Deep learning and deep knowledge representation in the human brain
-Chapter 3 from: N.Kasabov, Time-space, spiking neural networks and brain-inspired artificial intelligence, Springe-Nature, 2029

3.Modelling brain dynamics

- Benuskova, L., Kasabov, N. Modeling brain dynamics using computational neurogenetic approach. Cogn Neurodyn 2, 319-334
(2008). https://doi.org/10.1007/s11571-008-9061-1
4. Evolving learning systems

- N. Kasabov, "Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning," in IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 31, no. 6, pp. 902-918, Dec. 2001, doi: 10.1109/3477.969494.

- NeuCom software (): EFUNN
5. Neuro—fuzzy learning and inference systems: DENFIS

- Kasabov, N. K., & Song, Q. (2002). DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series
prediction. IEEE transactions on Fuzzy Systems, 10(2), 144-154.

- DENFIS software in Python.
6. Spatio-temporal learning systems: SNN

- N. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri, Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal
pattern recognition. Neural Networks, 41(1995), 188-201 (2013). https://doi.org/10.1016/j.neunet.2012.11.014.
- Software deSNN
7. Reservoir computing and Brain-inspired SNN
- N. Kasabov, NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain

data. Neural Netw. 52(2014), 62—-76 (2014).
- N. Kasabov et al, Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: Design
methodology and selected applications, Neural Networks, v.78, 1-14, 2016. http://dx.doi.org/10.1016/j.neunet.2015.09.011.

8. Integrated learning systems:
- P. Koprinkova-Hristova, D. Penkov, S. Nedelcheva, S. Yordanov and N. Kasabov, "On-line Learning, Classification and Interpretation of Brain
Signals using 3D SNN and ESN," 2023 International Joint Conference on Neural Networks (IJCNN), Gold Coast, Australia, 2023, pp. 1-6,
doi: https://doi.org/10.1109/IJCNN54540.2023.10191974,

- AbouHassan et al, NeuDen: Integrating evolving Neuromorphic spiking neural networks and Dynamic evolving neuro-fuzzy systems for
predictive and explainable learning of multiple time series

GEETTED
nkasabov@aut.ac.nz
A NK 4

https://doi.org/10.1007/s11571-008-9061-1
https://theneucom.com/
https://doi.org/10.1016/j.neunet.2012.11.014

CogSysEn: Lecture Topics

Part Il. Associative memories

9. Evolving Associative Memories in bio-neuro systems and in SNN

- Kasabov, Nikola (2023). STAM-SNN: Spatio-Temporal Associative Memories in Brain-inspired Spiking Neural Networks: Concepts and
Perspectives. TechRxiv. Preprint.

10. Associative memories for neuroimaging data: EEG and fMRI

- N K. Kasabov, H Bahrami, M Doborjeh, A Wang, Brain Inspired Spatio-Temporal Associative Memories for Neuroimaging Data: EEG
and fMRI, Bioengineering 2023, MDPI 10(12), 1341 https://doi.org/10.3390/bioengineering10121341,
www.mdpi.com/journal/bioengineering

11. Audio-visual associative memories

- N Kasabov, B Sen Bhattacharya, D Patel, N Aggarwal, T Bankar, IAbouHassan, Cognitive Audio-Visual Associative Memories using
Brain-inspired Spiking Neural Networks with Case Studies on Moving Object Recognition .

12. Predictive associative memories for time series

- AbouHassan, I; Kasabov, N; Bankar, T; Garg, R; Sen Bhattacharya, B (2023). PAMeT-SNN: Predictive Associative Memory for
Multiple Time Series based on Spiking Neural Networks with Case Studies in Economics and Finance. TechRxiv. Preprint.
https://doi.org/10.36227/techrxiv.24063975.v1, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4665533

Part Ill. Software and Hardware Implementation of CogSys.
13. Neuromorphic hardware for CogSys implementations

- J. Behrenbeck, Z. Tayeb, C. Bhiri, C. Richter, O. Rhodes, N. Kasabov, S. Furber, J. Conrad, Classification and Regression of Spatio-
Temporal EMG Signals using NeuCube Spiking Neural Network and its implementation on SpiNNaker Neuromorphic Hardware. J.
Neural Eng. (IOP Press, Atrticle reference: INE-102499) (2018). http://iopscience.iop.org/journal/1741-2552.

- paper for CogSys on Loihi chip
14. CogSys design and software/hardware implementation
- NeuCubePy, NEST, PyNN for SpiNNaker, Lava for Loihi, Software for China chips
15. Quantum computation

- Ravi, N. Kasabov et al, (2023). From Quantum Computing to Quantum-inspired Computation for Neuromorphic Advancement — A Survey.
TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.24053250.v1

16. Revision of the course

nkasabov@aut.ac.nz

https://doi.org/10.36227/techrxiv.23723208.v1
https://doi.org/10.3390/bioengineering10121341
http://www.mdpi.com/journal/bioengineering
https://doi.org/10.36227/techrxiv.24063975.v1
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4665533
http://iopscience.iop.org/journal/1741-2552

Lecture 14. CogSys Design and
Software/Hardware Implementations

1. CogSys Design

2. Python based implementations. NeuCubePy
3. PyNN for SpiNNaker

4. NEST

5. Lava for Loihi

6. Questions

nkasabov@aut.ac.nz http://www.knowledgeengineering.ai

mailto:nkasabov@aut.ac.nz
http://www.knowledgeengineering.ai/

1.CogSys Design

1. Analysis of the problem and the type of data available
2. Architecture design — usually using SNN
3. Input data encoding
4. Learning in the SNN model:
- unsupervised,
- supervised,
- evolving (life-ling)
- reinforcement,
5. Classification/regression models and calculating the outputs
6. Dynamic parameter optimisation;
7. Model testing
8. Extracting knowledge and visualisation
9. Adaptation on new data in an on-line/ real time mode;
10. Implementation of a SNN model:
- von Neumann vs
- Neuromorphic vs .
- Quantum

: _ @
_ www.kedri.aut.ac.nz/neucube

http://www.kedri.aut.ac.nz/neucube

Choosing the platform for realisation of a SNN-based CogSys

A SNN CogSys can be implemented using:
- von Neumann architecture;
- Neuromorphic architecture;
- Quantum computer (not available yet).

- The computer architecture of John von Neumann
separates data and programmes (kept in the
memory unit) from the computation (ALU); uses
bits. First machine ABC by Atanassov and Berry.

- A Neuromorphic architecture integrates the data,
the programme and the computation in a SNN
structure, similar to how the brain works; uses

spikes (bits at times). l
- A quantum computer uses g@-bits (bits in a ==

superposition) .

(c) www.teach-ict.com

N. Sengupta et al, (2018), From von Neumann architecture and Atanasoff’s ABC to Neuromorphic Computation and Kasabov’s NeuCube:

Principles and Implementations, Chapter 1 in: Advances in Computational intelligence, Jotzov et al (eds) Springer 2018.

AU

nkasabov@aut.ac.nz

Neuromorphic hardware systems

SpiNNaker (Furber, S., To Build a Brain, IEEE Spectrum,
vol.49, Number 8, 39-41, 2012).

Silicon retina (the DVS) and silicon cochlea (ETH, Zurich,
Toby Delbruck)) for input data encoding

Loihi chip of Intel

High speed and low power consumption!

=
Q
o
=
Q
(=]
=]
Qo
e

uam SU!J! O

mailto:nkasabov@aut.ac.nz

3. Python based implementations. NeuCubePy

NeuCube development environment for SNN system design

PHILIPS

p—

nkasabov@aut.ac.nz www.kedri.aut.ac.nz/neucube/

mailto:nkasabov@aut.ac.nz
http://www.kedri.aut.ac.nz/neucube/

NeuCube Implementations
Software versions;:

4 L @

MaTLAB Java® python’

Hardware-specific versions:

RaspberryPi

Future development: NeuCube chips for Al applications

www.kedri.aut.ac.nz/neucube/ www.neucube.io

http://www.kedri.aut.ac.nz/neucube/

NeuCubePy
https://github.com/KEDRI-AUT/NeuCube-Py

Sources:
neucube/reservoir.py
neucube/topology.py
neucube.egg-info/PKG-INFO
neucube.egg-info/SOURCES.txt
neucube.egg-info/dependency_links.txt
neucube.egg-info/requires.txt
neucube.egginfo/top_level.txt
neucube/encoder/__init__.py
neucube/encoder/encoder.py
neucube/sampler/__init__.py
neucube/sampler/sampler.py
neucube/training/__init__.py
neucube/training/nrdp.py
neucube/training/stdp.py
neucube/utils/ _init__.py
neucube/utils/utils.py
neucube/validation/__init__.py
neucube/validation/pipeline.py

nkasabov@aut.ac.nz

https://github.com/KEDRI-AUT/NeuCube-Py

) File Edit Selecton View Go Run Terminal Hel & O NeuCubePy DBomon - X
p

I-_D EXPLORER [wrist_movement_demoipynb ® = Release Notes: 1.90.0 & M -
1
> SEARCH B wrist_ movement_demo.ipynb ..
I_D “ NEUCUBEPY + Code + Markdown | [> RunAll 'O Restart == Clear All Outputs ‘ [& variables = outline a Python undefined.undefined undefined
2 build
N 2 dist
! from neucube import Reservoir

> example_data
from neucube.encoder import Delta
g 2 neucube

E}4] from neucube.validation import Pipeline
el A from neucube.sampler import SpikeCount
f ucensemd import torch
A B neucube.egg-info.zip (5] Python
() readme.md
= requirements.txt
setup.py import numpy as
wrist movement demo.ipynb import pandas as pd
filenameslist = ['sam'+str(idx)+' eeg.csv' for idx in range(1,61)]
dfs = []
T for filename in filenameslist:
dfs.append(pd.read_csv('./example_data/wrist_movement_eeg/'+filename, header=None))
fulldf = pd.concat(dfs)
labels = pd.read csv('./example data/wrist movement eeg/tar class labels.csv', header=None)
y = labels.values.flatten()
teat names = pd.read csv('./example data/wrist movement eeg/feature names eeg.txt', header=HNone).values.flatten()
brain coordinates = pd.read csv('./example data/wrist movement eeg/brain coordinates.csv', header=lione).values
eeg_mapping = pd.read csv('./example data/wrist movement eeg/eeg mapping.csv', header=lone).values
[6] Python
X = torch.tensor(fulldf.values.reshape(60,128,14))
G@) encoder = Delta(threshold=e.8)
X = encoder.encode_dataset(X)
{:} y = labels.values.flatten()
> TIMELINE - Bython
X @oAo Wo n3,Col29 Spaces:4 Spaces:4 CRIF Cell5of5 0 {3}
- -— - - Y ' & . 832 pm =
- ,O B o B O e g <) g . 0 P F 1) H o l ® ¥C Ae® 7)o e

) File Edit Selecton View Go Run Terminal Hel & O NeuCubePy DBomon - X
p

I-_D EXPLORER B wrist movement_demo.pynb ® = Release Notes: 1.90.0 {?;} M
1
> SEARCH B wrist_ movement_demo.ipynb ..
I_D ™ NEUCUBEPY 4 code 4 Markdown | [RunAll O Restart = Clear All Qutputs | & Variables = Outline & Python undefined undefined.undefined
2 build N
N 7 dist from sklearn.metrics import accuracy score as accuracy
& > example_data from sklearn.metrics import confusion matrix
0 neucube from sklearn.mgdel_selectlgn import EFo}d .
H- ; from sklearn.linear model import LogisticRegression
) neucube.egg-info . -
from tqdm import tqdm
f LICENSEmd
2§ B neucube.egg-infozip kf = KFold(n splits=5, shuffle=True, random state=123)
() readme.md y_total, pred total = [],[]
= requirements.txt
setuppy for train index, test index in tgdm(kf.split(X)):

. . X _train, X test = X[train index], X[test index]

B wrist_movement_demo.ipynb - - . =
y_train, y test = y[train index], y[test index]

res = Reservoir(inputs=14)

sam = SpikeCount()

clf = LogisticRegression(solver="1iblinear")

“ OUTLINE pipe = pipeline(res, sam, clf)

pipe.fit(X train, y train)
pred = pipe.predict(X test)

y_total.extend(y test)
pred total.extend(pred)

print(accuracy(y total, pred total))
print(confusion matrix(y total, pred total))

[8] Python
5it [0@:27, 5.43s/it]
0. 7666666666666667
[[17 3 @]
@) [711 2]
[0 218]]
{'% > TIMELINE
X @oAo Wo n3,Col29 Spaces:4 Spaces:4 CRIF Cell5of5 0 {3}

& . ’ 835 pm =
- M4C A e® 7z d) NG i

»
==
&
&
[
4

= PP w2 oEE L H)ONRD S

4. PyNN for SPiNNaker
https://qithub.com/behrenbeck/NeuCube SpiNNaker

v Q NeuCube_SpiNNaker/NeuCube X + — O % o
< (6] 2 github.com/behrenbeck/NeuCube_SpiNNaker/blob/master/NeuCube.py ¥ B 0 : Q
o
O Product Solutions Open Source Enterprise Pricing Search or jump to...
b
B behrenbeck / NeuCube_SpiNNaker Pubiic O Notifications % Fork 9 f¥ Str 20~ o
o)
¢> Code () lssues 171 Pullrequests () Actions [Projects @ Security |~ Insights
[0 Files NeuCube_SpiNNaker / NeuCube.py & @y
¥ master N Q w behrenbeck Final Code bI772- Gyearsago <L) History
-+
Q Gotofile
| Code | Blame 278 lines (259 loc) - 19 KB Raw 0 & 2 -
> input_stage_1 —
> input_stage_2 !
2 created by Jan Behrenbeck
> input_stage_3 3
tage_1 !
> memory_stage
y_tage_ 5 import os, time
> memory stage 2 6 import csv
7 import numpy as np
? memow—ﬁage—g 8 from sklearn.neighbors import KNeighborsClassifier as kNNClassifier
N results 9 from Encoder import Encoder
1@ from Reservoir import NeuCubeReservoir
> setup_stage_Z 11 from Classifier import Output_Neuron, Classifier
D i 12
.giugnore
gitig 13 v class NeuCube():
Y Classifierpy 14
15 This class integrates all stages of the NeuCube model.
(Y Encoder.py 15
D MasterThesisTopic Sheet.pdf 17 v def _ init (self,input_electrodes,number of training samples,signal duration,signal timestep,simulation_timestep,subject):
18
| Master Thesis final.pdf y v

6:49 pm
ENG e (=

16/06/2024

https://github.com/behrenbeck/NeuCube_SpiNNaker

Demo NeuCube on SpiNNaker using PyNN

Classification and Regression of Spatio-Temporal
Signals using NeuCube and its implementation
on SpiNNaker Neuromorphic Hardware

Jan Behrenbeck, Zied Tayeb, Cyrine Bhiri,
Christoph Richter, Oliver Rhodes,
Nikola Kasaboov, Josafath Ramos,

Steve Furber, Gordon Cheng
and Joerg Conradt

SYeLe] THE UNIVERSITY OF

*
an) AUCKLAND

NNNNNNNNNN

nkasabov@aut.ac.nz

4. NEST

s @ [[@ Koprinkova N3-BG 2023 pdf X +

G (@ File | C/nkasabov/R&D/BG/N3-BG/Koprinkova%20N3-BG%202023.pdf w M

=Y v VYoawv | @DA @) | B

development

ab - + & 55 | of55

The Neural Simulation Technology Initiative

ABOUT NEST

ATURES

1. NEST provides over 50 neuron models many of which have been published. Choose from simple integrate-and-fire neurons with current or con-
ductance based synapses, over the Izhikevich or AdEx models, to Hodgkin-Huxley models.
2. NEST provides over 10 synapse models, including short-term plasticity (Tsodyks & Markram) and different variants of spike-timing dependent
plasticity (STDP).
3. NEST provides many examples that help you getting started with your own simulation project.
4, NEST offers convenient and efficient commands to define and connect large networks, ranging from algorithmically determined connections to
data-driven connectivity.
5. NEST lets you inspect and modify the state of each neuron and each connection at any time during a simulation.
6. NEST is fast and memory efficient. It makes best use of your multi-core computer and compute clusters with minimal user intervention.
7. NEST runs on a wide range of UNIX-like systems, from MacBooks to BlueGene supercomputers.
8. NEST has minimal dependencies. All it really needs is a C++ compiler. Everything else is optional.
9. NEST developers are using agile continuous integration-based workflows in order to maintain high code quality standards for correct and repro-
ducible simulations.
10. NEST has one of the largest and most experienced developer communities of all neural simulators. NEST was first released in 1994 under the
name SYNOD and has been extended and improved ever since.
11. NEST is open source software and is licensed under the GNU General Public License v2 or later.

X Result

6:59 pm

16/06/2024

o

4 4 & O

aD ao

nstitute
o o
pcapveanll Nermobmi

INSTITUTE OF INFORMATION AND
COMMUNICATION TECHNOLOGIES

Application of using NEST and Python for a BMI

electrodes

class

0 _gg—60 —40

&

80

0 0 20 4 ©°
Y

NeuCube structure |nitial smalll Connectivity
world after STDP I Python
C Vi training I

ESN reservoir

P. Koprinkova-Hristova, D. Penkov, S. Nedelcheva, S. Yordanov and N. Kasabov, "On-line Learning, Classification and
Interpretation of Brain Signals using 3D SNN and ESN," 2023 International Joint Conference on Neural Networks (IJCNN),
Gold Coast, Australia, 2023, pp. 1-6, doi: https://doi.org/10.1109/IJCNN54540.2023.10191974,

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10191974

6. LAVA for Loihi

M.Davies et al, EEE Micro Published by the IEEE Computer Society, January/February 2018 0272-1732/18/$33.00 ©2014

S.Dey, A.Dimirov, Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi, Front.Neurosci, 2022

Table Loihi pre-silicon performance and energy measurements.
Measured parameter Value at 0.75 V

Cross-sectional spike bandwidth per tile 3.44 Gspike/s
Within-tile spike energy 1.7 pJ

Within-tile spike latency 2.1 ns

Energy per tile hop (E-W / N-S) 3.0 pJ /4.0 pJ

Latency per tile hop (E-W / N-S) 4.1 ns/6.5ns

Energy per synaptic spike op (min) 23.6 pJ

Time per synaptic spike op (max) 3.5 ns

Energy per synaptic update (pairwise STDP) 120 pJ
Time per synaptic update (pairwise STDP) 6.1 ns

Energy per neuron update (active / inactive) 81 pJ / 52 pJ
Time per neuron update (active / inactive) 8.4 ns /5.3 ns
Mesh-wide barrier sync time (1-32 tiles) 113-465 ns

IN SYNAPSE DENDRITE AXON ouT

I

core_id
axon_id

Nsyn

2
i
3

axon_id

\
I
I
I

YNAPSE_MAP
META_STATE

|T’

ch °

Naxout

LEARNING =~ Input spike handling

Compartment update

bAP notification

Output spike generation

Synaptic update

https://www.frontiersin.org/articles/10.3389/fnins.2022.883360/full

LAVA implementation language for Loihi chips

Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook, By: MIKE DAVIES , ANDREAS WILD,
GARRICK ORCHARD , YULIA SANDAMIRSKAYA , GABRIEL A. FONSECA GUERRA , PRASAD JOSHI, PHILIPP PLANK , AND SUMEDH R.
RISBUD, Proceedings of IEEE, Vol. 109, No. 5, May 2021, https://doi.org/10.1109/JPROC.2021.3067593

(from lava-nc.org)

° Lava is an open-source software framework for developing neuro-inspired applications and mapping them to
neuromorphic hardware. Lava provides developers with the tools and abstractions to develop applications that fully
exploit the principles of neural computation. Constrained in this way, like the brain, Lava applications allow
neuromorphic platforms to intelligently process, learn from, and respond to real-world data with great gains in
energy efficiency and speed compared to conventional computer architectures.

e The vision behind Lava is an open, community-developed code base that unites the full range of approaches pursued
by the neuromorphic computing community. It provides a modular, composable, and extensible structure for
researchers to integrate their best ideas into a growing algorithms library, while introducing new abstractions that
allow others to build on those ideas without having to reinvent them.

° For this purpose, Lava allows developers to define versatile processes such as individual neurons, neural networks,
conventionally coded programs, interfaces to peripheral devices, and bridges to other software frameworks. Lava
allows collections of these processes to be encapsulated into modules and aggregated to form complex
neuromorphic applications. Communication between Lava processes uses event-based message passing, where
messages can range from binary spikes to kilobyte-sized packets.

e The behavior of Lava processes is defined by one or more implementation models, where different models may be
specified for different execution platforms (“backends”), different degrees of precision, and for high-level algorithmic
modeling purposes. For example, an excitatory/inhibitory neural network process may have different
implementation models for an analog neuromorphic chip compared to a digital neuromorphic chip, but the two
models could share a common “E/I” process definition with each model’s implementations determined by common
input parameters.

° Lava is platform-agnostic so that applications can be prototyped on conventional CPUs/GPUs and deployed to
heterogeneous system architectures spanning both conventional processors as well as a range of neuromorphic
chips such as Intel’s Loihi. To compile and execute processes for different backends, Lava builds on a low-level
interface called Magma with a powerful compiler and runtime library. Over time, the Lava developer community may
enhance Magma to target additional neuromorphic platforms beyond its initial support for Intel’s Loihi chips.

lava-nc.org

Questions, exercises, assignments and project work

1. What are the main software systems for neuromorphic computers ?

2. What are the benefits of CoSysEn on neuromorphic platforms?

nkasabov@aut.ac.nz https://www.knowledgeengineering.ai/

mailto:nkasabov@aut.ac.nz
https://www.knowledgeengineering.ai/

© N OA®DNDRE

10.
11.
12.

13.
14.

15.

16.

17.

Course References

N.Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Al, Springer 2019 (course book).

N. Kasabov Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, MIT Press, 1996 (additional reading)
N.Kasabov, Evolving connectionist systems, Springer 2003 and 2007 (additional reading)

Kasabov, N. (ed) (2014) The Springer Handbook of Bio- and Neuroinformatics, Springer. (additional reading)

NeuCube:

NeuCom:

KEDRI R&D Systems available from:

N. Kasabov, et al, Design methodology and selected applications of evolving spatio- temporal data machines in the NeuCube
neuromorphic framework, Neural Networks, v.78, 1-14, 2016. http://dx.doi.org/10.1016/j.neunet.2015.09.011.

Furber, S., To Build a Brain, IEEE Spectrum, vol.49, Number 8, 39-41, 2012.
Benuskova, L., N.Kasabov (2007) Computational Neurogenetic Modelling, Springer, New York
Indiveri, G. et al, Neuromorphic silicon neuron circuits, Frontiers in Neuroscience, 5, 2011.

Kasabov, N. (2014) NeuCube: A Spiking Neural Network Architecture for Mapping, Learning and Understanding of Spatio-Temporal
Brain Data, Neural Networks, 52, 62-76.

Kasabov (2010) To spike or not to spike: A probabilistic spiking neural model, Neural Networks, v.23,1, 16-19

Merolla, P.A., J.V. Arhur, R. Alvarez-lcaza, A.S.Cassidy, J.Sawada, F.Akopyan et al, “A million spiking neuron integrated circuit with a
scalable communication networks and interface”, Science, vol.345, n0.6197, pp. 668-673, Aug. 2014.

Wysoski, S., L.Benuskova, N.Kasabov (2007) Evolving Spiking Neural Networks for Audio-Visual Information Processing, Neural
Networks, vol 23, issue 7, pp 819-835.

Kasabov, Nikola; Tan, Yongyao Tan; Doborjeh, Maryam; Tu, Enmei; Yang, Jie (2023): Transfer Learning of Fuzzy Spatio-Temporal
Rules in the NeuCube Brain-Inspired Spiking Neural Network: A Case Study on EEG Spatio-temporal Data. TechRXxiv. Preprint.
https://techrxiv.org), https://doi.org/10.36227/techrxiv.21781103.v1, licence CC BY 4.0)

Nikola K. Kasabov, Iman AbouHassan, Vinayak G.M. Jagtap, Parag Kulkarni, Spiking neural networks for predictive and explainable
modelling of multimodal streaming data on the Case Study of Financial Time Series Data and on-line news, SREP, Nature, pre-print on
the Research Square, DOI: https://doi.org/10.21203/rs.3.rs-2262084/v1, licence CC BY 4.0,

https://orcid.org/0000-0003-4433-7521

https://knowledgeengineering.ai
http://scholar.google.com/citations?hl=en&user=YTa9Dz4AAAAI&view_op=list_works
https://www.scopus.com/authid/detail.uri?authorld=35585005300

https://academics.aut.ac.nz/nkasabov

http://www.kedri.aut.ac.nz/neucube/
https://theneucom.com/
http://www.kedri.aut.ac.nz/
https://techrxiv.org/
https://doi.org/10.36227/techrxiv.21781103.v1
https://doi.org/10.21203/rs.3.rs-2262084/v1
https://orcid.org/0000-0003-4433-7521
https://knowledgeengineering.ai/
http://scholar.google.com/citations?hl=en&user=YTa9Dz4AAAAJ&view_op=list_works
https://www.scopus.com/authid/detail.uri?authorId=35585005300
mailto:nkasabov@aut.ac.nz

	Slide 1: “111 Centre on Biological Computing and Artificial Intelligence” , Dalian University (DLU) Cognitive Systems Engineering Course organiser: Prof. Shihua Zhou Course presenter
	Slide 2: Research Course DLU 2024 Cognitive System Engineering Cognitive systems (CogSys) are software-hardware systems that have their structure and functionality
	Slide 3: CogSysEn: Lecture Topics
	Slide 4
	Slide 5: Lecture 14. CogSys Design and Software/Hardware Implementations 1. CogSys Design 2. Python based implementations. NeuCubePy 3. PyNN for SpiNNaker 4. NEST 5. Lava for Loihi 6. Questions
	Slide 6
	Slide 7: Choosing the platform for realisation of a SNN-based CogSys
	Slide 8: Neuromorphic hardware systems
	Slide 9
	Slide 10: NeuCube Implementations
	Slide 11: NeuCubePy https://github.com/KEDRI-AUT/NeuCube-Py
	Slide 12
	Slide 13
	Slide 14: 4. PyNN for SPiNNaker https://github.com/behrenbeck/NeuCube_SpiNNaker
	Slide 15: Demo NeuCube on SpiNNaker using PyNN
	Slide 16: 4. NEST
	Slide 17
	Slide 18: 6. LAVA for Loihi M.Davies et al, EEE Micro Published by the IEEE Computer Society, January/February 2018 0272-1732/18/$33.00 ©2018 S.Dey, A.Dimirov, Mapping and Validating a Point Neuron Model on Intel’s Neuromorphic Hardware Loihi, F
	Slide 19: LAVA implementation language for Loihi chips
	Slide 20: Questions, exercises, assignments and project work 1. What are the main software systems for neuromorphic computers ? 2. What are the benefits of CoSysEn on neuromorphic platforms?
	Slide 21: Course References

