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Abstract

Al in health and neurosurgery

Neuroinformatics

Neural networks (NN).

Brain-inspired spiking neural networks. NeuCube. Neurocomputers.
Application specific methods and systems

Discussions and future work
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Brain-Inspired Artificial Intelligence, Springer (2019), Brain-Inspired Artificial
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1. Al in Health and Neurosurgery
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Healthcare Al revenue by Machine Learning technologies - the World Market
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Tractica, White paper, 2017
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Al in Neurosurgery
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Absolute and the cumulative number of
publications involved neurosurgery and
artificial intelligence in their title or abstract
over the past decade. The representative data
was gathered from the database PubMed
using neurosurgery OR neurological surgery
OR brain surgery AND artificial intelligence OR
machine learning OR deep learning search
function in the title or abstract from 20107 2020

An overview of the role of Al in neurosurgery (from:
MohammadMofatteh Neurosurgery and artificial intelligence,

) AIMS
Neuroscience, 8(4): 47495.



https://doi.org/10.3934/Neuroscience.2021025

Why Al in Neurosurgery and what are the challenges?

Panesar, Sandip S MD, MSc; Kliot, Michel MD; Parrish, Rob MD, PhD; Fernandez-
Miranda, Juan MD; Cagle, Yvonne MD; Britz, Gavin W MD. Promises and Perils of
Artificial Intelligence in Neurosurgery. Neurosurgery 87(1):p 33-44, July 2020. | DOI:
10.1093/neuros/nyz471 Neurosurgery
Promises: Al techniques may permit rapid and detailed analysis of the large -
guantities of clinical data generated in modern healthcare settings, at a level that is
otherwise impossible by humans. Subsequently, Al may enhance clinical practice by
pushing the limits of diagnostics, clinical decision making, and prognostication.

Perils: Faulty, inadequately trained, or poorly understood algorithms may produce
erroneous results, which may have wide-scale impact

T. Forcht DagFkred G. Barker, Jacob Gladachine Learning and Artificial Intelligence in
Neurosurgery: Status, Prospects, and Challenges, Neurosurgery,

OCreate a model that is as sophisticated as the problem requiresi but not more so.

Craig MacDonald
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2. Neuroinformatics
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Challenges:
1. Improved quality of data
2. Multiple modality (e.g. neuroimages, videos, signals, movement, cognitive).
3. Different types of data, e.g. vector based vs longitudinal; different time and space scales (EEG, fMRI)
4. Efficient learning of data (incremental, adaptive, life-long)
5. Predictive personalised modelling
6. Explainability
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3. Artificial Neural Networks

A ANN are computational models that mimic
the nervous system in its main function of
adaptive learning angkeneralisation.

ANN areuniversal computational models
1943, McCulloch and Pitts neuron
1962, Franc RosenblattPerceptron
1965,B.Widrow, Adaline/Madeline

1971 1986, Amari,RumelhartWerbos
Multilayer perceptron

Many engineering applications

Early NN: no adaptability and
explainability

To o To Do Po Do I»

Input layer Hidden layer Output layer

O(n5)=0
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Early deep neural networks for computer vision

Spatial features are represented (learned) in different layers of neurons
Fukushima's Cognitron (1975) and Neocognitron (1980) for image processing

Ugs
input
layer / :
contrast , ‘ 1
extraction edge L/ recognition

extraction layer
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Deep Convolutional Neural Networks

Single depth slice
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Brain MRI Input Segment Convolutional Layers Classification Layer

i o5
CNN's receplive feld 30x213 40x173 40x13° 0¥ 1\ 2

1 karne .
centred on top left prediction I* kernels (Kamnitsas et al., 2017)

Deep NN are excellent for vector, frame- based data (e.g. image recognition), but
not for spatio-temporal data and computer vision. There is no time of asynchronous
events learned in the model. Difficult to adapt to new data and the structures are not
flexible. How deep should they be? Who decides?

._'
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Adaptable and explainable evolving connectionist systems (ECOS)
(Evolving fuzzy neural networks )

A EFuNN

rule(case)
nodes;

Inputs outputs

IF Input 1 is High and Input 2 is Low THEN
Output is Very High

N. Kasabov, EFUNN, IEEE Trans. SMC,2001.

N.Kasabov, Evolving connectionist systems,
Springer, 2007.

24 Centuries after

rule extraction and knowledge discovery from data!
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4. Brain-inspired spiking neural networks. NeuCube. Neurocomputers

The human brain, the most sophisticated product of the evolution, is a live-long learning
system for knowledge representation and knowledge transfer.

220 ms

Primary
visual
cortex

(from L.BenuskovaN.KasaboyComputational
neurogenetic modelling, Springer, 2007)

The challengefor Al :

Three, mutually interacting, memory types:
- short term (membrane potential);

- long term (synaptic weights);

- genetic (genes in the nuclei).
Temporal data at different time scales:

- Nanoseconds: quantum processes;

- Milliseconds: spiking activity;

- Minutes: gene expressions;

- Hours: learning in synapses;

- Many years: evolution of genes.

Knowledge is represented as deep spatio-
temporal patterns that can evolve/adapt over
time.

Canwe usetheseprinciplesto build Al systemghatcanlearnincrementallyandpossiblyin alife-long
learningmodeandcanbeinterpretedasknowledgediscoveryat any phaseof theirlearning?

nkasabov@aut.ac.nz




Spiking Neural Networks

Information processing principles in SNN

Ttlzg{;n? N~ I Trains of spikes
%N N’) 7 spike i Time, frequency and space
D 4 r— I Synchronisation and stochasticity
N — > Lf +— refractory period i Spike-time and spike-rate information

| |
—

Spiking neural networks (SNN)
i Leaky Integrate-and-fire
i Izhikevich models
i Probabilistic model
u(t) RI(Y I Neurogenetic model
They offer the potential for:
I Spatio-temporal data processing
i Bridging higher | evel
level genetics
I Integration of modalities

»  Binary events

SNN opened the field of brain-inspired computation and
the creation of neurcomputers .
Arhe goal of brain-inspired computing is to deliver a
scalable neural network substrate while approaching
fundamental limits of time, space, and energy,06 | BM Fe
Dharmendra Modha, chief scientist of Brain-inspired
Computing at IBM Research,

o
o
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Brain modelling and brain-inspired systems

(1) Brain-modelling systems: detailed analysis of brain functions and their computational
modelling

- Horizon 2020 Blue Brain Project
- TheVirtual Brain:
TheVirtualBrains a framework for the simulation of the dynamics of lasgale brain networks with biologically realistic connectivity.

EMPIRICAL MODEL 1 :}---;" Firing 3
P 7 § i rate ;
dw-MRI |bnuvcc xi i l !
actlvuty _~ ;
— W Synaptic i i
om—b TIw-MRI | s = U j i.‘_ activity
EEG SIMULATED
fMERI - | PARAMETER | «——» fMRI
ESTIMATION

MichaelSchirner Anthony Randal Mcintosh, Viktdirsa Gustavo Deco, Petra Ritténferring multiscale neural mechanisms with brain
network modelling, (

(2) Brain-inspired data analytics: using brain principles to build models of brain data that can be used to
understand back brain functions (reverse engineering)

- For computer vision (DVS, NeoCognitron) (Keshab k. Parhi, Nanda k. Unnikrishnan, Brain-Inspired Computing: Models
and Architectures,

- For spatio-temporal brain data (NeuCube )

nkasabov@aut.ac.nz
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The NeuCube brain-inspired SNN architecture for spatio-temporal brain-data
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Kasabov, N., NeuCube: A Spiking Neural Network Architecture for Mapping, Learning and Understanding of Spatio-Temporal

Brain Data, Neural Networks, vol.52, 2014.
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Spike encoding methods

A spike is generated only if a change in the input data occurs beyond a threshold
Silicon Retina (Tobi Delbruck, INI, ETH/UZH, Zurich ), DVS128: Retinotopic
Silicon Cochlea ( Shih-Chii Liu, INI, ETH/UZH, Zurich): Tonotopic
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Threshold-based encoding, retinotopic (INI/ETH Zurich) Tonotopic organization of the cochlea

https://sites.google.com/site/jayanthinyswebite
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Spiking neuron models

Models of a spiking neurons and SNN integration
y . PI<Ing + leakage \, — _
i Hodgkin- Huxley P
I Spik
DIE response_: model u \ V:— refractory period
I Integrate-and-fire = ------------—--- > = =
I Leaky integrator 3 ,-»Oi—“—' Binary events
I Izhikevich model x4 L1

I Probabilistic and neurogenetic models
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Methods for unsupervised learning in SNN
Spike-Time Dependent Plasticity (STDP)
(Abbott and Nelson, 2000).

A Hebbian form of plasticity in the form N

of long-term potentiation (LTP) and | [ ooty
depression (LTD) g’ - S
A Effect of synapses are strengthened MNP~ sna Synapse
or weakened based on the timing of Desontiock gy > \}| 7
pre-synaptic spikes and post-synaptic ovetes e . O
. . Presynaptic cell ' Synaptic < «é ~— .
action pOtentIal Myelin sheath terminals "4, Postsynaptic cell

A Through STDP connected neurons
learn consecutive temporal
associations from data.

A Variations of the STDP
Pre-synaptic activity that precedes post-

synaptic firing can induce LTP, reversing
this temporal order causes LTD: e .30 %

-0.2 —

F (%)

@t tpre -tpost

-0.4 -

www.kedri.aut.ac.nz
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Methods for supervised learning in SNN
Rank order (RO) learning rule (Thorpe et al, 1998)

) — perder())

0 If fired

UO=1 5 wm™? else

i [iif ()<
Output s

\

PSP max (T) = SUM [(rAder 0t) w,,(1)], for j=1,2.., k; t=1,2,...,T;

PSR, =C. PSPmaxT) (C <1 for early spiking)

- Earlier coming spikes are more important (carry more information)
- Early spiking can be achieved, depending on the parameter C.

Dynamic Evolving SNN (deSNN)
Kasabov, N., Dhoble, K., Nuntalid, N., G. Indiveri, Dynamic Evolving Spiking Neural Networks for On-line
Spatio- and Spectro-Temporal Pattern Recognition, Neural Networks, v.41, 188-201, 2013.
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Creation of Neuron
Connections During
The Learning

The More Spike
Transmission, The
More Connections

Created

Spatio-temporal connections| unsupervised learning

e

S

parameter optimisation

:

Mapping and SNNc initialisation
|

™~ | Repeated random sub-sample validation

> s |
) ’ deSN _'_!./"' D Leave one out cross validation

Supervised learning and
Validation

!
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Spike Trains
Entered to the
SNNc

Neuron Spiking
Activity During the
STDP Learning
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N. Kasabov,N. Scott, E.Tu, S. Marks, N.SenguptaE.Capecci,M.Othman,M Doborjeh,N.Murli,R.Hartonqg J.EspinosaRamos,L.Zhou,

FAlvi, GWang D.Taylor, V. Feigin,S Gulyaev, M.Mahmoudh Z-G.Hou, J.Yang Design methodologyand selectedapplicationsof

evolving spatie temporal data machines in the NeuCube neuromorphic framework, Neural Networks, v.78 1-14, 2016
(bestpaperawardby the NeuralNetworkjournal)

nkasabov@aut.ac.nz www.kedri.aut.ac.nz/neucube/
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Example

A SNNcube that learns EEG data from 14 EEG channels when a person is moving a wrist. The
sequence of connections of the trained SNNcube can be interpreted as a spatio-temporal rule.

\\./"

~

200 ms 600 ms 1 Second

_Sensorimotor Integration -Sensorimotor Integration
- Motor planning -Perception Cognitive -Perception Cognitive
function Processing N Processing - Logical
(a) N attention

IF (a person is moving a hand up)
THEN (the following neurnal areas representing brain functions are activated in space and
time):
E1l: Planning, in the Motor Planning functional brain area, time T1,
AND E2: Sensorimotor integration, in the Sensorimotor integration brain area, at time T2
AND E3: Perception, in the Perception Cognitive brain area, time T3
AND E4: Attention, in the Logical Attention brain area, time T4.
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Capturing time-space knowledge as information exchange between clusters of
neurons representing brain areas

- Clusters of highly connected neurons to input neurons;
- Clusters of spiking activity spread from input neurons ;

- A dynamic graph of information exchange between spatially distributed clusters around the
inputs

feature 5 feature 4

100

80 .

60 .

40

20

150

feature 11 feature 12

nkasabov@aut.ac.nz



Capturing knowledge representation in a BI-SNN through
supervised learning with deSNN

Example of a spatio-temporal rule associating Cube activities with outputs (actions)
IF (area (Xi,Y1,Zi) in the Cube with a cluster radius Ri is activated at time about T1) AND
(area (X},Y]},Z)) with a cluster radius Rj is activated at time about T2) AND
(area (Xk,Yk,ZKk) with a cluster radius Rk is activated at time about T3) AND
(no other areas of the SNNcube are activated)
THEN (The output class prototype is number 4 from class 1).
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