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The mission:

To investigate, promote and stimulate the
advancement and implementation of new,
emerging technologies and innovations in
neurosurgery. To help neurosurgeons to stay at
the upfront and remain leaders in the creative
process of development of new devices and
technologies, and their introduction in the
everyday neurosurgical practice
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Abstract

Al in health and neurosurgery

Neuroinformatics

Neural networks (NN).

Brain-inspired spiking neural networks. NeuCube. Neurocomputers.
Application specific methods and systems

Discussions and future work
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Brain-Inspired Artificial Intelligence, Springer (2019), Brain-Inspired Artificial
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1. Al in Health and Neurosurgery
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Healthcare Al revenue by Machine Learning technologies - the World Market
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Tractica, White paper, 2017
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Al in Neurosurgery

Pre-:{p:rf o~ Number of publications on neurosurgery and Al between 2010 and 2020
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Absolute and the cumulative number of
publications involved neurosurgery and
artificial intelligence in their title or abstract
over the past decade. The representative data
was gathered from the database PubMed
using neurosurgery OR neurological surgery
OR brain surgery AND artificial intelligence OR
machine learning OR deep learning search
function in the title or abstract from 2010-2020

An overview of the role of Al in neurosurgery (from:
Mohammad Mofatteh, Neurosurgery and artificial intelligence,

) AIMS
Neuroscience, 8(4): 477-495.



https://doi.org/10.3934/Neuroscience.2021025

Why Al in Neurosurgery and what are the challenges?

Panesar, Sandip S MD, MSc; Kliot, Michel MD; Parrish, Rob MD, PhD; Fernandez-
Miranda, Juan MD; Cagle, Yvonne MD; Britz, Gavin W MD. Promises and Perils of
Artificial Intelligence in Neurosurgery. Neurosurgery 87(1):p 33-44, July 2020. | DOI:
10.1093/neuros/nyz471 Neurosurgery
Promises: Al techniques may permit rapid and detailed analysis of the large -
guantities of clinical data generated in modern healthcare settings, at a level that is
otherwise impossible by humans. Subsequently, Al may enhance clinical practice by
pushing the limits of diagnostics, clinical decision making, and prognostication.

Q2 v o ﬁ)_(

Perils: Faulty, inadequately trained, or poorly understood algorithms may produce
erroneous results, which may have wide-scale impact

T. Forcht Dagi, Fred G. Barker, Jacob Glass, Machine Learning and Artificial Intelligence in
Neurosurgery: Status, Prospects, and Challenges, Neurosurgery,

“Create a model that is as sophisticated as the problem requires — but not more so.”
Craig MacDonald
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2. Neuroinformatics
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Challenges:
1. Improved quality of data
2. Multiple modality (e.g. neuroimages, videos, signals, movement, cognitive).
3. Different types of data, e.g. vector based vs longitudinal; different time and space scales (EEG, fMRI)
4. Efficient learning of data (incremental, adaptive, life-long)
5. Predictive personalised modelling
6. Explainability
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3. Artificial Neural Networks

ANN are computational models that mimic
the nervous system in its main function of
adaptive learning and generalisation.

ANN are universal computational models
1943, McCulloch and Pitts neuron

1962, Franc Rosenblatt — Perceptron
1965, B.Widrow, Adaline/Madeline

1971- 1986, Amari, Rumelhart, Werbos:
Multilayer perceptron

Many engineering applications
Early NN: no adaptability and
explainability

Hidden layer

Output layer

O(n5)=0
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Early deep neural networks for computer vision

Spatial features are represented (learned) in different layers of neurons
Fukushima's Cognitron (1975) and Neocognitron (1980) for image processing

Ugs
input
layer / :
contrast , ‘ 1
extraction edge L/ recognition

extraction layer

nkasabov@aut.ac.nz



Deep Convolutional Neural Networks

Single depth slice
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Brain MRI Input Segment Convolutional Layers Classification Layer

i o5
CNN's receplive feld 30x213 40x173 40x13° 0¥ 1\ 2

1 karne .
centred on top left prediction I* kernels (Kamnitsas et al., 2017)

Deep NN are excellent for vector, frame- based data (e.g. image recognition), but
not for spatio-temporal data and computer vision. There is no time of asynchronous
events learned in the model. Difficult to adapt to new data and the structures are not
flexible. How deep should they be? Who decides?

._'
nkasabov@aut.ac.nz J B U




Adaptable and explainable evolving connectionist systems (ECOS)
(Evolving fuzzy neural networks )

 EFUNN

rule(case)
nodes I,

Inputs outputs

IF Input 1 is High and Input 2 is Low THEN
Output is Very High

N. Kasabov, EFUNN, IEEE Trans. SMC,2001.

N.Kasabov, Evolving connectionist systems,
Springer, 2007.
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Kasabov, N., and Song, Q., DENFIS:
Dynamic Evolving Neural-Fuzzy Inference
System and its Application for Time Series
Prediction, IEEE Trans. on Fuzzy Systems,
2002.

24 Centuries after Aristotle’ epistemology, nhow we can automate the process of

rule extraction and knowledge discovery from data!
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4. Brain-inspired spiking neural networks. NeuCube. Neurocomputers

The human brain, the most sophisticated product of the evolution, is a live-long learning
system for knowledge representation and knowledge transfer.

250 ms

Prefrontal cortex

Primary
visual
cortex

(from L.Benuskova, N.Kasabov, Computational
neurogenetic modelling, Springer, 2007)

The challenge for Al:

Three, mutually interacting, memory types:
- short term (membrane potential);

- long term (synaptic weights);

- genetic (genes in the nuclei).
Temporal data at different time scales:

- Nanoseconds: quantum processes;

- Milliseconds: spiking activity;

- Minutes: gene expressions;

- Hours: learning in synapses;

- Many years: evolution of genes.

Knowledge is represented as deep spatio-

temporal patterns that can evolve/adapt over
time.

Can we use these principles to build Al systems that can learn incrementally and possibly in a life-long
learning mode and can be interpreted as knowledge discovery at any phase of their learning?

nkasabov@aut.ac.nz




Spiking Neural Networks

Information processing principles in SNN

Ttlzg{;n? N~ — Trains of spikes
® N N’] " spike — Time, frequency and space
D 2 r— — Synchronisation and stochasticity
f] m— \\ Lf 4 refractory period — Spike-time and spike-rate information

Spiking neural networks (SNN)
— Leaky Integrate-and-fire
— lzhikevich models
— Probabilistic model
—u(t) + RI (V) — Neurogenetic model
They offer the potential for:
— Spatio-temporal data processing

— Bridging higher level functions and “lower”
level genetics

— Integration of modalities

| |
—

»  Binary events

SNN opened the field of brain-inspired computation and
the creation of neurcomputers .
“The goal of brain-inspired computing is to deliver a
scalable neural network substrate while approaching
fundamental limits of time, space, and energy,” IBM Fellow
Dharmendra Modha, chief scientist of Brain-inspired
Computing at IBM Research,

o
o
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Brain modelling and brain-inspired systems

(1) Brain-modelling systems: detailed analysis of brain functions and their computational
modelling

- Horizon 2020 Blue Brain Project
- TheVirtual Brain:
TheVirtualBrain is a framework for the simulation of the dynamics of large-scale brain networks with biologically realistic connectivity.

EMPIRICAL MODEL 1 :}--1" Firing
2l ‘ i rate ;
dw-MRI lbnuvcc \i i l !
ac*tlvny H ;
— i\ Synaptic i i
om—b TIw-MRI | s = U j i\_ activity
EEG SIMULATED
fMERI - | PARAMETER | «——» fMRI
ESTIMATION

Michael Schirner, Anthony Randal Mcintosh, Viktor Jirsa, Gustavo Deco, Petra Ritter, Inferring multi-scale neural mechanisms with brain
network modelling, ,

(2) Brain-inspired data analytics: using brain principles to build models of brain data that can be used to
understand back brain functions (reverse engineering)

- For computer vision (DVS, NeoCognitron) (Keshab k. Parhi, Nanda k. Unnikrishnan, Brain-Inspired Computing: Models
and Architectures,

- For spatio-temporal brain data (NeuCube )

nkasabov@aut.ac.nz
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The NeuCube brain-inspired SNN architecture for spatio-temporal brain-data

Spatio/ Spectro Temporal
Input Data Stream
Chunkn .. Chunk )
e ALl

/' (Classification

T
Input Stimulus .=

T CCCLTTTTN
o '
o See,

SPO PO

-
teou

Probabilistic Parameters

Modelling .

Neurogenetic Cube (NeuCube)

e~ ol

v e e

Gene Regula{ow Network

Output Module

] &

| Classification

=

Modelling

Output Class

r: Class A

| Class 8

{ CassC
ClassD

Cassn

1

Tk Fowreal

NP

\.

I

i

Th et 0N a0y
i e

Output Data

Kasabov, N., NeuCube: A Spiking Neural Network Architecture for Mapping, Learning and Understanding of Spatio-Temporal

Brain Data, Neural Networks, vol.52, 2014.
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Spike encoding methods

A spike is generated only if a change in the input data occurs beyond a threshold
Silicon Retina (Tobi Delbruck, INI, ETH/UZH, Zurich ), DVS128: Retinotopic
Silicon Cochlea ( Shih-Chii Liu, INI, ETH/UZH, Zurich): Tonotopic
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Threshold-based encoding, retinotopic (INI/ETH Zurich) Tonotopic organization of the cochlea

https://sites.google.com/site/jayanthinyswebite
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Spiking neuron models

Models of a spiking neurons and SNN integration
: PIINg + leakage "\, e _—
— Hodgkin- Huxley P
— Spik
DIE response_: model u \ V:— refractory period
— Integrate-and-fire = ------------——-- > = =
— Leaky integrator 3 ,-»Oi—“—' Binary events
— Izhikevich model 4 L1

— Probabilistic and neurogenetic models
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Methods for unsupervised learning in SNN
Spike-Time Dependent Plasticity (STDP)
(Abbott and Nelson, 2000).

* Hebbian form of plasticity in the form N

of long-term potentiation (LTP) and | [ ooty
depression (LTD) g’ - S
 Effect of synapses are strengthened /7~ .~ s Synapse
or weakened based on the timing of Desontiock gy > \}| 7
pre-synaptic spikes and post-synaptic Ve — Na -
. . Presynaptic cell ' Synaptic < «é ~— .
action pOtentIal Myelin sheath terminals "4, Postsynaptic cell

« Through STDP connected neurons
learn consecutive temporal
associations from data.

« Variations of the STDP
Pre-synaptic activity that precedes post-

synaptic firing can induce LTP, reversing
this temporal order causes LTD: e .30 %

-0.2 —

F (%)

At=tpre -tpost

-0.4 -

www.kedri.aut.ac.nz
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Methods for supervised learning in SNN
Rank order (RO) learning rule (Thorpe et al, 1998)

Ui (t) —

iji =m

order(j)

( 0 if fired

> wm et else

LI ()<t

PSP max (T) = SUM [(m oder G0) w, (1)], for j=1,2.., k; t=1,2,...T;

PSP, =C. PSPmax (T) (C <1 for early spiking)

- Earlier coming spikes are more important (carry more information)
- Early spiking can be achieved, depending on the parameter C.

Dynamic Evolving SNN (deSNN)

Kasabov, N., Dhoble, K., Nuntalid, N., G. Indiveri, Dynamic Evolving Spiking Neural Networks for On-line
Spatio- and Spectro-Temporal Pattern Recognition, Neural Networks, v.41, 188-201, 2013.

nkasabov@aut.ac.nz




Creation of Neuron
Connections During
The Learning

The More Spike
Transmission, The
More Connections

Created

Spatio-temporal connections| unsupervised learning

e

S

parameter optimisation

:

Mapping and SNNc initialisation
|

™~ | Repeated random sub-sample validation

> s |
) ’ deSN _'_!./"' D Leave one out cross validation

Supervised learning and
Validation

!
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Spike Trains
Entered to the
SNNc

Neuron Spiking
Activity During the
STDP Learning
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N. Kasabov, N. Scott, E.Tu, S. Marks, N.Sengupta, E.Capecci, M.Othman,M. Doborjeh, N.Murli,R.Hartono, J.Espinosa-Ramos, L.Zhou,

F.Alvi, G.Wang, D.Taylor, V. Feigin,S. Gulyaev, M.Mahmoudh, Z-G.Hou, J.Yang, Design methodology and selected applications of

evolving spatio- temporal data machines in the NeuCube neuromorphic framework, Neural Networks, v.78, 1-14, 2016.
(best paper award by the Neural Network journal)

nkasabov@aut.ac.nz www.kedri.aut.ac.nz/neucube/
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Example

A SNNcube that learns EEG data from 14 EEG channels when a person is moving a wrist. The
sequence of connections of the trained SNNcube can be interpreted as a spatio-temporal rule.

\\./"

~

200 ms 600 ms 1 Second

_Sensorimotor Integration -Sensorimotor Integration
- Motor planning -Perception Cognitive -Perception Cognitive
function Processing N Processing - Logical
(a) N attention

IF (a person is moving a hand up)
THEN (the following neurnal areas representing brain functions are activated in space and
time):
E1l: Planning, in the Motor Planning functional brain area, time T1,
AND E2: Sensorimotor integration, in the Sensorimotor integration brain area, at time T2
AND E3: Perception, in the Perception Cognitive brain area, time T3
AND E4: Attention, in the Logical Attention brain area, time T4.

nkasabov@aut.ac.nz



Capturing time-space knowledge as information exchange between clusters of
neurons representing brain areas

- Clusters of highly connected neurons to input neurons;
- Clusters of spiking activity spread from input neurons ;

- A dynamic graph of information exchange between spatially distributed clusters around the
inputs

feature 5 feature 4

100

80 .

60 .

40

20

150

feature 11 feature 12
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Capturing knowledge representation in a BI-SNN through
supervised learning with deSNN
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SNN Cube Output Layer

Example of a spatio-temporal rule associating Cube activities with outputs (actions)
IF (area (Xi,Y1,Zi) in the Cube with a cluster radius Ri is activated at time about T1) AND
(area (X},Y]},Z)) with a cluster radius Rj is activated at time about T2) AND
(area (Xk,Yk,ZKk) with a cluster radius Rk is activated at time about T3) AND
(no other areas of the SNNcube are activated)
THEN (The output class prototype is number 4 from class 1).

nkasabov@aut.ac.nz



NeuCube development environment for SNN system design
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Neurocomputers: From von Neumann principles and Atanassov’'s ABC Machine to
Neuromorphic Hardware

- The computer architecture of John von
Neumann separates data and programmes (kept
in the memory unit) from the computation (ALU);
uses bits. First machine ABC by Atanassov and
Berry.

- A Neuromorphic architecture integrates the data,
the programme and the computation in a SNN
structure, similar to how the brain works; uses
spikes (bits at times).
- A quantum computer uses ¢-bits (bits in a
superposition) .

A SNN application system can be implemented
as:
- von Neumann architecture;
- Neuromorphic architecture;

- Quantum computer.

(c) www.teach-ict.com

N. Sengupta et al, (2018), From von Neumann architecture and Atanasoffs ABC to Neuromorphic Computation and Kasabov’s NeuCube:

Principles and Implementations, Chapter 1 in: Advances in Computational intelligence, Jotzov et al (eds) Springer 2018.

nkasabov@aut.ac.nz




Neuromorphic hardware systems (Neurocomputers)

Massively parallel, high speed, low power consumption/

Carver Mead (1989): A hardware model of an IF neuron:
The Axon-Hillock circuit.

SpiNNaker (Furber, S., To Build a Brain, IEEE Spectrum,
vol.49, Number 8, 39-41, 2012).

=
o
L]
=
e
[~
-
a
=

INI Zurich SNN chips (Giacomo Indiveri)

Silicon retina (the DVS) and silicon cochlea (ETH, Zurich,
Toby Delbruck))

The IBM True North (D.Modha et al, 2016): 1mIn neurons
and 1 billion of synapses

FPGA SNN realisations (McGinnity, Ulster and NTU)

INTEL Lohia (128 cores, each for 1,024 spiking neurons) .

nkasabov@aut.ac.nz nk.kasabov@ulster.ac.uk
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5. Application specific methods and systems

Deep learning and deep knowledge representation of neuroimaging spatio-temporal brain data
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STBD Encoding
into Spike Trains

fMRI Recording

Evolving Neuronal Clusters

tMRI Voxels

Z.Doborjeh, N. Kasabov, M. Doborjeh & Alexander Sumich, Modelling Peri-Perceptual Brain Processes in a Deep Learning
Spiking Neural Network Architecture, Nature, Scientific REPORTS | (2018) 8:8912 | DOI:10.1038/s41598-018-27169-8;
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Brain Machine Interfaces using Brain-Inspired SNN

Brain-Machine Interfaces (BMI) are systems trained on human brain data (e.g. EEG, ECoG) for
humans to communicate directly with computers or external devices through their brains

Bl-BMI are designed using a brain template.

; - Signal Features _ - :
oy —3 ZAsinmm —» Traned Translation | nevice Commands :
and Preprocessing " A Liad. Algorithm :
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Extracting Time-Space Rules (TSR) from a trained NeuCube using

EEG data for the GAL task
IF (event E1) AND (event E2 ) ...THEN (Action)

«".
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: i S - ing:
@ e @ ®® o0 tmotor plann_mg
oy o' motor-planning, P>0.8)
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. 4 B 4 AND(Etouch-object : Ftouch-object, Stouch-object, ttouch-object, P>0.8)
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@ c @° 0 o Poe AND(Erest : Frest, Srest, trest, P>0.8)
e @ i Q/ ™ @\ 0’ = P THEN(Q = Qgrasp-and-lift).
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&L 60\ 60\ °~o\ 60\ 60\ 60\ <«
S o Td O e e where Si = {Posterior Lobe, Temporal Lobe, Limbic Lobe, Frontal Lobe, Anterior Lobe,
& L L OO P
S T ‘Q@‘?ftédb Occipital Lobe, Midbrain, Parietal Lobe}

Kasabov, N., Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence, Springer (2018), 750p.,

K.Kumarasinghe, N.Kasabov, D.Taylor, Deep Learning and Deep Knowledge Representation in Spiking Neural Networks
for Brain-Computer Interfaces, Neural Networks, vol.121 (2020),169-185, doi: https://doi.org/10.1016/j.neunet.2019.08.029.
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BI-SNN for neurorehabilitation

Kumarasinghe, K., Kasabov, N. & Taylor, D. Brain-inspired spiking neural networks for decoding and
understanding muscle activity and kinematics from electroencephalography signals during hand

movements. Sci Rep 11, 2486 (2021).
Neuroscience for 2021)
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https://doi.org/10.1038/s41598-021-81805-4

FULLY EMBEDDED AUTO-ADAPTIVE BRAIN MACHINE INTERFACE

IMPLANTABLE MEASURE — STIMULATION

TECHNOLOGY

- CHRONIC WIRELESS BRAIN RECORDING WIMAGINE IMPLANT

- SPINAL CORD STIMULATION ONWARD IMPLANT

- 2 CLINICAL TRIALS ONGOING: BRAIN MACHINE INTERFACE
PROOF OF CONCEPT

UTO-ADAPTIVE MOTOR DECQDING
- NATURAL CONTROL BASED ON PATIENT'S INTENTIQN
- MULTIPLE DEGREES OF FREEDOM CONTROL

- DECODING OF NEURAL RESPONSE LINKED _ TO
INTENTION/ACTION COHERENCE [ICT- BAS

- REAL-TIME AUTO-ADAPTIVE DECODER
ASSISTANCE FREE
k NEUROMORPHIC DECODING ALGORITHMS /

DECODED MOTOR INTENTION
DECODED NEURAL RESPONSE

BRAIN-GUIDED SPINAL CORD STIMULATION

- EPIDURAL ELECTRICAL TARGETED DYNAMIC STIMULATION
- AUTO-ADAPTATIVE STIMULATION PATTERNS

MINIATURIZATION OF BMI TECHNOLOGY

- LOW POWER INTEGRATED CIRCUIT FOR ACCELERATING
THE DECODING ALGORITHMS

- HIGH SYSTEM LEVEL INTEGRATION

- PORTABLE BATTERY-POWERED SOLUTION

NEMO-BMI, HORIZON-EIC-2021-PATHFINDERCHALLENGES-01-02

France (CEA, Grenoble), the Netherlands (ONWARD), Switzerland (EPFL), Bulgaria (IICT/BAS)
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Modelling brain EEG signals while working with a VR/AR.

Cybersickness

g AHX, Kasabov NK, Cakmak YO. Prediction and Detection of Virtual Reality induced Cybersickness: A Spiking Neural Network
oach Using Spatiotemporal EEG Brain Data and Heart Rate Variability. Research Square; 2022. DOI: 10.21203/rs.3.rs-2383481/v1,
rain Informatics, Springer-Nature, 2023

ander Hui Xiang Yang, Nikola Kasabov and Yusuf Ozgur Cakmak, Machine Learning Methods for the Study of Cybersickness: A

ystematic Review, Brain Informatics, Springer-Nature, 9:24, 2022, U0-UZ2~

wrototype  virtual A virtual efvironment to A virtual | environment
environment of a hand control a quadrotor using  (3D) using Qculus rift DK2
attempti to grasp a EEGsignals. to mov in an
glass coutrolled with environment using EEG.
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https://doi.org/10.1186/s40708-022-00172-6

Personalised modelling for predicting response to treatment of drug addicts
(Class M - who take medication; class OP — who do not take medication)

Doborjeh, M., and Kasabov, N., IEEE WCCI/IJCNN, 2016 (Response to treatment of drug addicts using clinical and EEG data)

M. Doborjeh, N. Kasabov, Z. Doborjeh, R. Enayatollahi, E. Tu, A. H. Gandomi, Personalised modelling with spiking neural networks
integrating temporal and static information, Neural Networks, 119 (2019),162-177.

Input STBD spike trains

% 3D Brain-like
for training

SNNcube

deSNN
classifier

. Output
f| — B —

Personal static data vector of xi

NeuCube Personalised Modelling Module Recall new STBD of Xi

One trained SNN model using
Averaged over 47 trained PSNN all subjects and tested via
models: 93.61 leave-one-out method: 79.00
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Personalised modelling of longitudinal MRI data for the understanding and the prediction of progression
to MCI and to AD (based on Sydney MAS data, P.Sadchev et al)

(a) Study population (¢) MRI time-series of nearest neighbouring individualsto i || () MRI mapping and learning in a 3D brain-
Healthy MCI Dementia == inspired architecture of spiking neurons
i - ? el B =ncow=
! i Traming spike sequences
N —— T TT |
(b) Data: longitudinal MRI measurement over 6 years — | TS T T T
i = == 1111111111
No == e _-‘-_‘ _N- | T T T T
record - ~ [0 T o ooy (o O PO oy T |
— = . - . —] f > -
Time 1 Time 2 Time 3 Time 4 ——p> " T1 to T4 time-senies for training
Baseline year 2 ’ year 4 year 6 6-year MRI time-senes o s
(c) Interpolated MRI to time-series (g) Testing the trained PSNN model with MRI time-series of individual i
¢ T g Totatvon
I | I I
’h' | I |
e e I
4 : I R - H A — Testing spike sequences Cl:H
Baseline year 2 year 4 year b o AR )
AAAe— Ml 11 a1 |
AN S— | TR Y VAW TV C2: MC1
d) N AT g M lm B0 TN G N N T O O |
(d) Nearest neighbouring sample selection for individudl i v ciD
e ary 1| a1l y
—v NN T R R U Y )
Individual Rl bt Lot
patient 7 >
e
e i Test the trained PSNN model with Tl 1o T4

time-senes from individual § to predict T4

aedep”

MRI samples at Time 1|

M. Doborjeh, Z.Doborjeh, A.Merkin, H.Bahrami, A.Sumich, R.Krishnamurthi, O. Medvedev, M.Crook-Rumsey, C. Morgan, [.Kirk,
P.Sachdev, H. Brodaty, K. Kang, W.Wen, V. Feigin, N. Kasabov, Personalised Predictive Modelling with Spiking Neural Networks of
Longitudinal MRI Neuroimaging Cohort and the Case Study of Dementia, Neural Networks, vol.144, Dec.2021, 522-539, .%o,

, ‘20°
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MRI-> personal 3D brain template -> BI-SNN model

S Saeedinia, MJahed-Motlagh, ATafakhori & N Kasabov, Personalised MRI structured BI-SNN and learning

algorithms for personalized modelling, analysis, and prediction of EEG signals, Scientific Reports, 11,12064
(2021)

- Predictive modelling of EEG signals for predicting episodes of epilepsy
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https://www.nature.com/articles/s41598-021-90029-5#auth-Abbas-Tafakhori
https://www.nature.com/articles/s41598-021-90029-5#auth-Nikola-Kasabov
https://www.nature.com/srep
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Understanding brain re-wiring due to mindfulness training using EEG

(a) (b) (c)

Differences between the connectivity in the trained SNN models of T1 (prior to MT) and T2
(post training) in (a) non-depressed (ND) group, (b) responsive-depressed (D+) group, and (c)
unresponsive depressed (D-) group. The connections in each neural cluster represent the
areas of main changes in the EEG after MT.

Z. Doborjeh, M. Doborjeh, T. Taylor, N. Kasabov, G. Y. Wang, R. Siegert, A. Sumich, Spiking
Neural Network Modelling Approach Reveals How Mindfulness Training Rewires the Brain,
Nature, Scientific Reports, (2019) 9: 6367, https://www.nature.com/articles/s41598-019-
42863-x (top 100 papers for 2019)
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Deep learning and deep knowledge representation of personal fMRI data

Spatial mapping of fMRI voxels into a 3D SNN cube.

N.Kasabov, M.Doborjeh, Z.Doborjeh, IEEE Transactions of Neural Networks and Learning Systems, DOI:
10.1109/TNNLS.2016.2612890,2016

Mapping SNN cube —deSNN Classifier — — Output—
.
Vi . 0) [dassh
. .
i ~ . .
i ',,\/ = 8
% o
gy . o/
“t .
N’)‘
81 Time points Input features selected via SNR feature selection n=number of samples
vorell,.....voxel n = Bumioe of cosses

Method / Subject
From STAR+ data

i SVM MLP NEUCUBE®
(picture vs sentence
perception)
04799 50(20,80) 35(30,40) 90(100,80)
04820 40(30,50) 75(80,70) 90(80,100)
04847 45(60,30) 65(70,60) 90(100,80)
05675 60(40,80) 30(20,40) 80(100,60)
05680 40(70,10) 50(40,60) 90(80,100)
05710 55(60,50) 50(50,50) 90(100,80)
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PM using both fMRI and DTI data

Case on response of schizophrenic patients to clozapine
Sengupta, N., McNabb, C. B., Kasabov, N., & Russell, B. R. (2018). Integrating Space, Time, and Orientation in Spiking Neural
Networks: A Case Study on Multimodal Brain Data Modelling. IEEE Transactions on Neural Networks and Learning Systems,

29(11). doi:10.1109/TNNLS.2018.2796023

Training data

New data

Spatial information

Classifier

Apply on the model

‘o'no'l‘,;» _l_
e e : Encoding l A
':1 l./“..:. PRy | | i X
" T Firing time
x A
»(“ A 3 3 3 :
directional information
| Spatial information
. -- A, —I ]
s I
e Encoding 1
O'.l:.'>.:-" I | ;
2 Firing time
R e
~a . - -
Xt directional information
| Spatial information
3 1
et ——
e oding 1 B
W 1
i Firing time
X A
-
F i directional information

Output: predicted class

N

>

www.kedri.aut.ac.nz



mailto:nkasabov@aut.ac.nz
http://www.kedri.info/

Integrating Space, Time and Direction in NeuCube:
A Case Study on fMRI + DTI brain data

A new learning rule is introduced: Orientation influenced STDP - oISTDP

/ - 1
ﬁ;‘ (i, @ji,) L

05
&

DTl L. oTl
‘__1-"' “I.f ’T}- ) 4 0 os

e (e, @iy) ’

0 t-t
i

dimensional

BSA+0iSTDP+KNN fMRI+DTI Yes 72.3%12.3 0.44+0.25
BSA+STDP+KNN fMRI Yes no 69.4+13.9 0.38+0.28
BSA+KNN fMRI no No 64.2+12.4 0.22+0.26

Sparse Autoencoder fMRI No no 56.1+7.2 0.01+0.11
45]+KNN(E) [44

fMRI no No 56.1+11.3 0.13+0.18
fMRI no No 62.8+12.3 0.26+0.23
fMRI no no 36.2+4.9 -0.23+0.11
fMRI yes no 45.7+9.6 -0.15+0.14

GRU [45] fMRI yes no 45.2+7.5 -0.018+0.13

N.Sengupta, C.McNabb, N.Kasabov, B.Russel, Integrating Space, Time and Orientation in Spiking Neural Networks: A Case Study on
Multimodal Brain Data Modelling, IEEE Tr NNLS, 2017.
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Personalised predictive modelling of individual risk of stroke
How environmental risk factors can inffuence the risk of individual stroke

occurrence?

10 environmental (CO, NO2, 03, SO2, and
PM10, PM2.5, temperature, wind-direction

1200 mdmduals average, wind-speed, and solar radiation).

Stroke (2011-2012) T ey

Clinical records (37 variables)

Affected group of 169 individuals: (45%
female); 55% male; mean-age= 74.05> mean-age
non-affected group (70.4); had history of stroke in

close family member, overweight, older, smokers,

diabetic, and taking medication.

Maryam Doborjeh, Zohreh Doborjeh, Alexander Merkin, Rita Krishnamurthi, Reza Enayatollahi, Valery Feigin,
Nikola Kasabov, Personalised Spiking Neural Network Models of Clinical and Environmental Factors to Predict
Stroke, Cognitive Computation, COGN-D-20-00511R2, 26 , 2021,

nkasabov@aut.ac.nz



https://www.springer.com/journal/12559

Personalised prediction of risk for stroke days ahead

(N.Kasabov, M. Othman, V.Feigin, R.Krishnamurti, Z Hou et al - Neurocomputing 2014)

METHODS SYM MLP KNN WKNN | NEUCUBE®

| day 55 30 40 50 95
earlier (%) | (70.40) (50,10) (50.30) | (70.30) | (90,100)

6 days 50 25 40 40 70
earlier (%) | (70,30) 20,30) (60,20) | (60,20) (70,70) | |
11 days 50 25 45 45 70
earlier (%) | (50.50) (30, 20) (60.30) | (60.30) (70,70)

WHIRPOIRL (2%
WIND 12 oLAR(11%)

TEMPDRY(13%)

03(26%)

SNN achieve better accuracy

SNN predict stroke much earlier
than other methods

* New information found about the

TEMPMIN(25%) NO2(5%)

PRessaa predictive relationship of
() Neuron proportion based on spike transmission variables

nkasabov@aut.ac.nz



Using ECOS and BI-SNN for PM results in a better predictive
accuracy and good explainability

o Other Al methods
Application
accuracy

Schizophrenia
Predicting formal diagnosis in next six months
using gene expression measures from blood test

Mindfulness Treatment
Predicting response to depression treatment
using EEG data

Methadone
Predicting treatment programme outcome using
EEG data

Stroke
Predicting stroke events using patient and
environmental data

AD/MCI/normal
Prediction 2 years ahead

nkasabov@aut.ac.nz

98%

73%

91%

94%

91%

92-97.5%

48.5-58.5%

60-63%

67.5-87.5%

40% (LSTM)

nk.kasabov@ulster.ac.uk
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6. Discussions and future directions

Advantages of BI-SNN:

1. Self-organised, evolvable structure (no fixed number of
layers/neurons, etc.)

2. Event based (asynchronous), fast, incremental, potentially “life-
long” learning.

Temporal (spatio-temporal) associations learned.
Interpretability, e.g. TSK representation —B'i'a“_‘]NEaro_

Low computational power |nformatics
Fault tolerance

o 0k w

Problems and limitations of BI-SNN
« Sensitive to parameter values [T e e

« Large number of parameters to be optimised e
. Time-Space, Spiki
* NO rlgld theory yet ngt]l(;alm(tf'.'orq:s lanngd
. . . . Brain-Inspired Artificial
« Ethical issues: www.mindthegap.ai Intelligence

nkasabov@aut.ac.nz



Computational Neuro-Genetic Modelling (CNGM)

- Benuskova and Kasabov (Springer, 2007)

SNN that incorporate a gene regulatory network (GRN) as a dynamic parameter
systems to capture dynamic interaction of genes (parameters) related to neuronal

activities of the SNN.

= Functions of neurons and neural networks are influenced by internal networks

of interacting genes and proteins forming an abstract GRN model.
- The GRN and the SNN function at different time scales.

Computational
Neurcgenetic

Modeling



mailto:nkasabov@aut.ac.nz

Integrating multimodal neuroimaging data

Spatial
information

Modelling simultaneously EEG and fMRI data is an open problem:
- different time scales
- different spatial resolution

nkasabov@aut.ac.nz nk.kasabov@ulster.ac.uk
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The N3-BG group (Neuroinformatics, Neural networks and Neurocomputers)
https://www.knowledgeengineering.ai/n3-bg
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Thank you!

For contacts: N.Kasabov (nkasabov@aut.ac.nz) or Ms Iman AbouHassan (iabouhassan@tu-sofia.bg)
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