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THE EANS TASK FORCE FOR EMERGING TECHNOLOGIES 
AND INNOVATIONS IN NEUROSURGERY (ETIN TASK FORCE)

Тhе mission:
To investigate, promote and stimulate the 
advancement and implementation of new, 
emerging technologies and innovations in 
neurosurgery. To help neurosurgeons to stay at 
the upfront and remain leaders in the creative 
process of development of new devices and 
technologies, and their introduction in the 
everyday neurosurgical practice
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Abstract

1. AI in health and neurosurgery

2. Neuroinformatics

3. Neural networks (NN).

4. Brain-inspired spiking neural networks. NeuCube. Neurocomputers.

5. Application specific methods and systems

6. Discussions and future work
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http://www.pwc.com/AI

1. AI in Health and Neurosurgery 

http://www.pwc.com/AI


Tractica, White paper, 2017

Healthcare AI revenue by Machine Learning technologies - the World Market

http://www.pwc.com/AI


An overview of the role of AI in neurosurgery (from: 

Mohammad Mofatteh, Neurosurgery and artificial intelligence, 

https://doi.org/10.3934/Neuroscience.2021025) AIMS 

Neuroscience, 8(4): 477–495. 

AI in Neurosurgery

Absolute and the cumulative number of 

publications involved neurosurgery and 

artificial intelligence in their title or abstract 

over the past decade. The representative data 

was gathered from the database PubMed 

using neurosurgery OR neurological surgery 

OR brain surgery AND artificial intelligence OR 

machine learning OR deep learning search 

function in the title or abstract from 2010–2020

https://doi.org/10.3934/Neuroscience.2021025
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Panesar, Sandip S MD, MSc; Kliot, Michel MD; Parrish, Rob MD, PhD; Fernandez-

Miranda, Juan MD; Cagle, Yvonne MD; Britz, Gavin W MD. Promises and Perils of 

Artificial Intelligence in Neurosurgery. Neurosurgery 87(1):p 33-44, July 2020. | DOI: 

10.1093/neuros/nyz471

Promises:  AI techniques may permit rapid and detailed analysis of the large 

quantities of clinical data generated in modern healthcare settings, at a level that is 

otherwise impossible by humans. Subsequently, AI may enhance clinical practice by 

pushing the limits of diagnostics, clinical decision making, and prognostication. 

Perils: Faulty, inadequately trained, or poorly understood algorithms may produce 

erroneous results, which may have wide-scale impact

----------------------------------------------------------------------

T. Forcht Dagi, Fred G. Barker, Jacob Glass, Machine Learning and Artificial Intelligence in 

Neurosurgery: Status, Prospects, and Challenges, Neurosurgery,  

www.neurosurgery-online.com

“Create a model that is as sophisticated as the problem requires – but not more so.” 

Craig MacDonald

Why AI in Neurosurgery and what are the challenges? 

http://www.neurosurgery-online.com/
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2. Neuroinformatics 

Challenges:

1. Improved quality of data

2. Multiple modality (e.g. neuroimages, videos, signals, movement, cognitive).

3. Different types of data, e.g. vector based vs longitudinal; different time and space scales (EEG, fMRI)

4. Efficient learning of data (incremental, adaptive, life-long)

5. Predictive personalised modelling

6. Explainability

mailto:nkasabov@aut.ac.nz


3. Artificial Neural Networks

• ANN are computational models that mimic 

the nervous system in its main function of 

adaptive learning and generalisation. 

• ANN are universal computational models

• 1943, McCulloch and Pitts neuron 

• 1962, Franc Rosenblatt – Perceptron

• 1965, B.Widrow, Adaline/Madeline

• 1971- 1986, Amari, Rumelhart, Werbos: 

Multilayer perceptron 

• Many engineering applications

• Early  NN: no adaptability and 

explainability

nkasabov@aut.ac.nz
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Early deep neural networks for computer vision
Spatial features are represented (learned) in different layers of neurons

Fukushima's Cognitron (1975)  and Neocognitron (1980) for image processing
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Deep Convolutional Neural Networks
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Deep NN are excellent for vector, frame- based data (e.g. image recognition), but

not for spatio-temporal data and computer vision. There is no time of asynchronous

events learned in the model. Difficult to adapt to new data and the structures are not

flexible. How deep should they be? Who decides?

(Kamnitsas et al., 2017)



Adaptable and explainable evolving connectionist systems (ECOS) 

(Evolving fuzzy neural networks ) 

• EFuNN DENFIS
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Inputs outputs

rule(case)

nodes rj

IF Input 1 is High and Input 2 is Low  THEN 
Output is Very High 

N. Kasabov, EFuNN, IEEE Trans. SMC,2001. 

N.Kasabov, Evolving connectionist systems, 

Springer, 2007.   

Kasabov, N., and Song, Q., DENFIS:
Dynamic Evolving Neural-Fuzzy Inference
System and its Application for Time Series
Prediction, IEEE Trans. on Fuzzy Systems,
2002.

24 Centuries after Aristotle’ epistemology, now we can automate the process of 
rule extraction and knowledge discovery from data!
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Three, mutually interacting, memory types: 

- short term (membrane potential); 

- long term (synaptic weights);

- genetic (genes in the nuclei).

Temporal data at different time scales:

- Nanoseconds: quantum processes; 

- Milliseconds: spiking activity;

- Minutes: gene expressions;

- Hours:  learning in synapses;

- Many years: evolution of genes.

Knowledge is represented as deep spatio-

temporal patterns that can evolve/adapt over 

time.  

4. Brain-inspired spiking neural networks. NeuCube. Neurocomputers

The human brain,  the most sophisticated product of the evolution, is a live-long learning 

system for knowledge representation and knowledge transfer.     
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The challenge for AI:

Can we use these principles to build AI systems that can learn incrementally and possibly in a life-long

learning mode and can be interpreted as knowledge discovery at any phase of their learning?

(from L.Benuskova, N.Kasabov, Computational 

neurogenetic modelling, Springer, 2007)



Spiking Neural Networks  

Information processing  principles in SNN 

– Trains of spikes 

– Time, frequency and space

– Synchronisation and stochasticity 

– Spike-time and spike-rate information

Spiking neural networks (SNN)

– Leaky Integrate-and-fire 

– Izhikevich models

– Probabilistic model

– Neurogenetic model 

They offer the potential for: 

– Spatio-temporal data processing

– Bridging higher level functions and “lower” 

level genetics

– Integration of modalities 

SNN opened the field of brain-inspired computation and 

the creation of neurcomputers .

“The goal of brain-inspired computing is to deliver a 

scalable neural network substrate while approaching 

fundamental limits of time, space, and energy,” IBM Fellow 

Dharmendra Modha, chief scientist of Brain-inspired 

Computing at IBM Research, 

nkasabov@aut.ac.nz
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Brain modelling and brain-inspired systems

(1) Brain-modelling systems: detailed analysis of brain functions and their computational 

modelling 

- Horizon 2020 Blue Brain Project 

- TheVirtual Brain: https://docs.thevirtualbrain.org/index.html

TheVirtualBrain is a framework for the simulation of the dynamics of large-scale brain networks with biologically realistic connectivity.

Michael Schirner, Anthony Randal McIntosh, Viktor Jirsa, Gustavo Deco, Petra Ritter, Inferring multi-scale neural mechanisms with brain 
network modelling, https://www.elifesciences.org, 

(2) Brain-inspired data analytics: using brain principles to build models of brain data that can be used to 

understand back brain functions (reverse engineering)

- For computer vision (DVS, NeoCognitron) (Keshab k. Parhi, Nanda k. Unnikrishnan, Brain-Inspired Computing: Models 

and Architectures, 

- For spatio-temporal brain data (NeuCube )

nkasabov@aut.ac.nz

https://docs.thevirtualbrain.org/index.html
https://www.elifesciences.org/


The NeuCube brain-inspired SNN architecture for spatio-temporal brain-data   

nkasabov@aut.ac.nz www.kedri.aut.ac.nz/neucube

Kasabov, N., NeuCube: A Spiking Neural Network Architecture for Mapping, Learning and Understanding of Spatio-Temporal 

Brain Data, Neural Networks,  vol.52, 2014. 

mailto:nkasabov@aut.ac.nz
http://www.kedri.aut.ac.nz/neucube


Spike encoding methods  

A spike is generated only if a change in the input data occurs beyond a threshold  

Silicon Retina (Tobi Delbruck, INI, ETH/UZH, Zurich ), DVS128: Retinotopic 

Silicon Cochlea ( Shih-Chii Liu, INI, ETH/UZH, Zurich): Tonotopic 

nkasabov@aut.ac.nz www.kedri.aut.ac.nz/neucube

Threshold-based encoding, retinotopic (INI/ETH Zurich)             Tonotopic organization of the cochlea

https://sites.google.com/site/jayanthinyswebite

mailto:nkasabov@aut.ac.nz
http://www.kedri.aut.ac.nz/neucube


Spiking neuron models

Models of a spiking neurons and SNN

– Hodgkin- Huxley

– Spike response model

– Integrate-and-fire       ---------------->

– Leaky integrator

– Izhikevich model

– Probabilistic and neurogenetic models

nkasabov@aut.ac.nz



Methods for unsupervised learning in SNN 
Spike-Time Dependent Plasticity (STDP) 

(Abbott and Nelson, 2000).

• Hebbian form of plasticity in the form 

of long-term potentiation (LTP) and 

depression (LTD)

• Effect of synapses are strengthened 

or weakened based on the timing of 

pre-synaptic spikes and post-synaptic 

action potential.

• Through STDP connected neurons 

learn consecutive temporal 

associations from data.

• Variations of the STDP 

Pre-synaptic activity that precedes post-

synaptic firing can induce LTP, reversing 

this temporal order causes LTD: 

∆t=tpre -tpost

nkasabov@aut.ac.nz www.kedri.aut.ac.nz

mailto:nkasabov@aut.ac.nz
http://www.kedri.aut.ac.nz/


Methods for supervised learning in SNN
Rank order (RO) learning rule (Thorpe et al, 1998)
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PSP max (T) = SUM [(m order (j(t)) wj,i(t)], for j=1,2.., k;  t=1,2,...,T; 

PSPTh=C. PSPmax (T)    (C <1 for early spiking)                     

- Earlier coming spikes are more important (carry more information)

- Early spiking can be achieved, depending on the parameter C.  

Dynamic Evolving  SNN (deSNN)

Kasabov, N., Dhoble, K., Nuntalid, N., G. Indiveri, Dynamic Evolving Spiking Neural Networks for On-line 

Spatio- and Spectro-Temporal Pattern Recognition, Neural Networks, v.41, 188-201, 2013.



Deep learning in NeuCube 

Spike Trains 

Entered to the 

SNNc

Neuron Spiking 

Activity During the 

STDP Learning

Creation of Neuron 

Connections During 

The Learning

The More Spike 

Transmission, The 

More Connections 

Created

nkasabov@aut.ac.nz             www.kedri.aut.ac.nz/neucube/
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N. Kasabov, N. Scott, E.Tu, S. Marks, N.Sengupta, E.Capecci, M.Othman,M. Doborjeh, N.Murli,R.Hartono, J.Espinosa-Ramos, L.Zhou,

F.Alvi, G.Wang, D.Taylor, V. Feigin,S. Gulyaev, M.Mahmoudh, Z-G.Hou, J.Yang, Design methodology and selected applications of

evolving spatio- temporal data machines in the NeuCube neuromorphic framework, Neural Networks, v.78, 1-14, 2016.

http://dx.doi.org/10.1016/j.neunet.2015.09.011 (best paper award by the Neural Network journal)

http://dx.doi.org/10.1016/j.neunet.2015.09.011


Example

A SNNcube that learns EEG data from 14 EEG channels when a person is moving a wrist. The

sequence of connections of the trained SNNcube can be interpreted as a spatio-temporal rule.

IF (a person is moving a hand up)

THEN (the following neurnal areas representing brain functions are activated in space and 

time):

E1: Planning, in the Motor Planning functional brain area, time T1, 

AND E2:  Sensorimotor integration, in the Sensorimotor integration brain area, at time T2

AND E3: Perception, in the Perception Cognitive brain area, time T3

AND E4: Attention, in the Logical Attention brain area, time T4.   

nkasabov@aut.ac.nz



Capturing time-space knowledge as information exchange between clusters of 

neurons representing brain areas  

- Clusters of highly connected neurons to input neurons;

- Clusters of spiking activity spread from input neurons ;

- A dynamic graph of information exchange between spatially distributed clusters around the 

inputs 

nkasabov@aut.ac.nz



Capturing knowledge representation in a BI-SNN through 

supervised learning with deSNN

Example of a spatio-temporal rule associating Cube activities with outputs  (actions) 

IF (area (Xi,Yi,Zi) in the Cube with a cluster radius Ri is activated at time about T1) AND

(area (Xj,Yj,Zj) with a cluster radius Rj is activated at time about T2) AND 

(area (Xk,Yk,Zk) with a cluster radius Rk is activated at time about T3) AND 

(no other areas of the SNNcube are activated)

THEN  (The output class prototype is number 4 from class 1).         

nkasabov@aut.ac.nz
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NeuCube development environment for SNN system design 
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Neurocomputers: From von Neumann principles and Atanassov’s ABC Machine to 

Neuromorphic Hardware  

- The computer architecture of John von

Neumann separates data and programmes (kept

in the memory unit) from the computation (ALU);

uses bits. First machine ABC by Atanassov and

Berry.

- A Neuromorphic architecture integrates the data,

the programme and the computation in a SNN

structure, similar to how the brain works; uses

spikes (bits at times).

- A quantum computer uses q-bits (bits in a

superposition) .

A SNN application system can be implemented

as:

- von Neumann architecture;

- Neuromorphic architecture;

- Quantum computer.

nkasabov@aut.ac.nz

N. Sengupta et al, (2018), From von Neumann architecture and Atanasoffs ABC to Neuromorphic Computation and Kasabov’s NeuCube:

Principles and Implementations, Chapter 1 in: Advances in Computational intelligence, Jotzov et al (eds) Springer 2018.



Neuromorphic hardware systems (Neurocomputers)

Massively parallel, high speed, low power consumption/

Carver Mead (1989): A hardware model of an IF neuron:

The Axon-Hillock circuit. 

SpiNNaker (Furber, S., To Build a Brain, IEEE Spectrum, 

vol.49, Number 8, 39-41, 2012).

INI Zurich SNN chips (Giacomo Indiveri)

Silicon retina (the DVS) and silicon cochlea (ETH, Zurich, 

Toby Delbruck))

The IBM True North (D.Modha et al, 2016): 1mln neurons 

and 1 billion of synapses

FPGA  SNN realisations (McGinnity, Ulster and NTU) 

INTEL Lohia (128 cores, each  for 1,024 spiking neurons) .

nkasabov@aut.ac.nz nk.kasabov@ulster.ac.uk
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EEG Recording

fMRI Recording

Step1:

STBD 

measurement  

Step2: 

Encoding

STBD Encoding 

into Spike Trains

Step3: Variable 

Mapping into 3D SNNc

Talairach Template 

fMRI Voxels

Step4:STDP learning 

& Dynamic clustering

Neuron Connections

Evolving Neuronal Clusters 

Step5: Analysis of the connectivity of the trained 3D SNNc as dynamic spatio-temporal clusters related to brain processes 

5. Application specific methods and systems

Deep learning and deep knowledge representation of neuroimaging spatio-temporal brain data 
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Z.Doborjeh, N. Kasabov, M. Doborjeh & Alexander Sumich, Modelling Peri-Perceptual Brain Processes in a Deep Learning 

Spiking Neural Network Architecture, Nature, Scientific REPORTS | (2018) 8:8912 | DOI:10.1038/s41598-018-27169-8; 

https://www.nature.com/articles/s41598-018-27169-8

https://www.nature.com/articles/s41598-018-27169-8


Brain Machine Interfaces using Brain-Inspired SNN 
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Brain-Machine Interfaces (BMI)  are systems trained on human brain data (e.g. EEG, ECoG) for 

humans to  communicate directly with computers or external devices through their brains 

BI-BMI are designed using a brain template.  



Kasabov, N., Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence, Springer (2018), 750p.,  

https://www.springer.com/gp/book/9783662577134

K.Kumarasinghe, N.Kasabov, D.Taylor, Deep Learning and Deep Knowledge Representation in Spiking Neural Networks 

for Brain-Computer Interfaces, Neural Networks, vol.121 (2020),169-185, doi: https://doi.org/10.1016/j.neunet.2019.08.029.

nkasabov@aut.ac.nz

Extracting Time-Space Rules (TSR) from a trained  NeuCube using 

EEG data for the GAL task
IF (event E1) AND (event E2 ) …THEN (Action)   

IF(Ecue-onset : Fcue-

onset, S{cue-onset}, 

tcue-onset, P>0.8) 

AND(Emotor-planning : 

Fmotor-planning, 

Smotor-planning, 

tmotor-planning, P>0.8) 

AND(Emovement-onset : Fmovement-onset, Smovement-onset,tmovement-onset, P>0.8) 

AND(Etouch-object : Ftouch-object, Stouch-object, ttouch-object, P>0.8)  

AND(Ehold-object : Fhold-object, Shold-object, thold-object, P>0.9)  

AND(Erelease-object : Frelease-object, Srelease-object,trelease-object, P>0.8) 

AND(Erest : Frest, Srest, trest, P>0.8) 

THEN(Q   = Qgrasp-and-lift). 

 

where Si = {Posterior Lobe, Temporal Lobe, Limbic Lobe, Frontal Lobe, Anterior Lobe, 

Occipital Lobe, Midbrain, Parietal Lobe}

https://www.springer.com/gp/book/9783662577134


BI-SNN for neurorehabilitation  
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Kumarasinghe, K., Kasabov, N. & Taylor, D. Brain-inspired spiking neural networks for decoding and 
understanding muscle activity and kinematics from electroencephalography signals during hand 
movements. Sci Rep 11, 2486 (2021). https://doi.org/10.1038/s41598-021-81805-4 (ranked 11 in 
Neuroscience for 2021)

https://doi.org/10.1038/s41598-021-81805-4
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France (CEA, Grenoble), the Netherlands (ONWARD), Switzerland (EPFL), Bulgaria (IICT/BAS)



Modelling brain EEG signals while working with a VR/AR. 

Cybersickness    

A prototype virtual

environment of a hand

attempting to grasp a

glass controlled with

EEG signals.

A virtual environment to
control a quadrotor using
EEG signals.

A virtual environment
(3D) using Oculus rift DK2
to move in an
environment using EEG.

Yang AHX, Kasabov NK, Cakmak YO. Prediction and Detection of Virtual Reality induced Cybersickness: A Spiking Neural Network 

Approach Using Spatiotemporal EEG Brain Data and Heart Rate Variability. Research Square; 2022. DOI: 10.21203/rs.3.rs-2383481/v1, 

Brain  Informatics, Springer-Nature, 2023

Alexander Hui Xiang Yang, Nikola Kasabov and Yusuf Ozgur Cakmak, Machine Learning Methods for the Study of Cybersickness: A 

Systematic Review, Brain Informatics, Springer-Nature, 9:24, 2022, https://doi.org/10.1186/s40708-022-00172-6, 

https://doi.org/10.1186/s40708-022-00172-6


Personalised modelling for predicting response to treatment  of drug addicts 
(Class M - who take medication; class OP – who do not take medication)  

Doborjeh, M., and Kasabov, N., IEEE WCCI/IJCNN, 2016 (Response to treatment of drug addicts using clinical and EEG  data)

M. Doborjeh, N. Kasabov, Z. Doborjeh, R. Enayatollahi, E. Tu, A. H. Gandomi, Personalised modelling with spiking neural networks 

integrating temporal and static information, Neural Networks, 119 (2019),162-177. 

Methods NeuCube-Personalised modelling NeuCube- Global modelling

Classification 

accuracy of class M 

versus class OP in 

%

Averaged over 47 trained PSNN

models: 93.61

One trained SNN model using 

all subjects and tested via 

leave-one-out method: 79.00

nkasabov@aut.ac.nz
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Personalised modelling of longitudinal MRI data for the understanding and the prediction of progression 
to MCI and to AD (based on Sydney MAS data, P.Sadchev et al)

M. Doborjeh, Z.Doborjeh, A.Merkin, H.Bahrami, A.Sumich, R.Krishnamurthi, O. Medvedev, M.Crook-Rumsey, C.  Morgan, I.Kirk, 

P.Sachdev, H. Brodaty, K. Kang, W.Wen, V. Feigin, N. Kasabov, Personalised Predictive Modelling with Spiking Neural Networks of 

Longitudinal MRI Neuroimaging Cohort and the Case Study of Dementia, Neural Networks, vol.144, Dec.2021, 522-539, 

https://doi.org/10.1016/j.neunet.2021.09.013, 

nkasabov@aut.ac.nz nk.kasabov@ulster.ac.uk

https://doi.org/10.1016/j.neunet.2021.09.013
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MRI-> personal 3D brain template -> BI-SNN model

S Saeedinia, MJahed-Motlagh, ATafakhori & N Kasabov, Personalised MRI structured BI-SNN and learning 

algorithms for personalized modelling, analysis, and prediction of EEG signals, Scientific Reports, 11,12064 

(2021)

- Predictive modelling of EEG signals for predicting episodes of epilepsy 

nkasabov@aut.ac.nz nk.kasabov@ulster.ac.uk

https://www.nature.com/articles/s41598-021-90029-5#auth-Samaneh_Alsadat-Saeedinia
https://www.nature.com/articles/s41598-021-90029-5#auth-Mohammad_Reza-Jahed_Motlagh
https://www.nature.com/articles/s41598-021-90029-5#auth-Abbas-Tafakhori
https://www.nature.com/articles/s41598-021-90029-5#auth-Nikola-Kasabov
https://www.nature.com/srep
mailto:nkasabov@aut.ac.nz
mailto:nk.kasabov@ulster.ac.uk


nkasabov@aut.ac.nz

Understanding brain re-wiring due to  mindfulness training using EEG 

Z. Doborjeh, M. Doborjeh, T. Taylor, N. Kasabov, G. Y. Wang, R. Siegert, A. Sumich, Spiking

Neural Network Modelling Approach Reveals How Mindfulness Training Rewires the Brain,

Nature, Scientific Reports, (2019) 9: 6367, https://www.nature.com/articles/s41598-019-

42863-x (top 100 papers for 2019)

Differences between the connectivity in the trained SNN models of T1 (prior to MT) and T2 

(post training) in (a) non-depressed (ND) group, (b) responsive-depressed (D+) group, and (c) 

unresponsive depressed (D−) group. The connections in each neural cluster represent the 

areas of main changes in the EEG after MT.

https://www.nature.com/articles/s41598-019-42863-x#auth-1
https://www.nature.com/articles/s41598-019-42863-x#auth-2
https://www.nature.com/articles/s41598-019-42863-x#auth-3
https://www.nature.com/articles/s41598-019-42863-x#auth-4
https://www.nature.com/articles/s41598-019-42863-x#auth-5
https://www.nature.com/articles/s41598-019-42863-x#auth-6
https://www.nature.com/articles/s41598-019-42863-x#auth-7
https://www.nature.com/articles/s41598-019-42863-x
https://www.nature.com/articles/s41598-019-42863-x
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Deep learning and deep knowledge representation of personal fMRI data

Spatial mapping of fMRI voxels into a 3D SNN cube. 

N.Kasabov, M.Doborjeh, Z.Doborjeh, IEEE Transactions of Neural Networks and Learning Systems, DOI: 

10.1109/TNNLS.2016.2612890,2016

Method / Subject

From STAR+ data  

(picture vs sentence 

perception)

SVM MLP NEUCUBEB

04799 50(20,80) 35(30,40) 90(100,80)

04820 40(30,50) 75(80,70) 90(80,100)

04847 45(60,30) 65(70,60) 90(100,80)

05675 60(40,80) 30(20,40) 80(100,60)

05680 40(70,10) 50(40,60) 90(80,100)

05710 55(60,50) 50(50,50) 90(100,80)



Encoding

Firing time

Spatial information

Encoding

Encoding

.

.

.

directional information

Firing time

Firing time

directional information

directional information

Classifier

Spatial information

Spatial information

Output: predicted class

Apply on the model

PM using both fMRI and DTI data 
Case on response of schizophrenic patients to clozapine 

Sengupta, N., McNabb, C. B., Kasabov, N., & Russell, B. R. (2018). Integrating Space, Time, and Orientation in Spiking Neural

Networks: A Case Study on Multimodal Brain Data Modelling. IEEE Transactions on Neural Networks and Learning Systems, 

29(11). doi:10.1109/TNNLS.2018.2796023

nkasabov@aut.ac.nz www.kedri.aut.ac.nz

mailto:nkasabov@aut.ac.nz
http://www.kedri.info/
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Integrating Space, Time and Direction in NeuCube:

A Case Study on fMRI + DTI brain data 

A new learning rule is introduced: Orientation influenced STDP - oiSTDP

Method Data Temporal Multi-

dimensional

Accuracy(%) Cohen’s κ

BSA+oiSTDP+KNN fMRI+DTI yes Yes 72.3±12.3 0.44±0.25

BSA+STDP+KNN fMRI Yes no 69.4±13.9 0.38±0.28

BSA+KNN fMRI no No 64.2±12.4 0.22±0.26

Sparse Autoencoder  

[45]+KNN(E) [44]

fMRI No no 56.1±7.2 0.01±0.11

PCA [44]+KNN(E) [44] fMRI no No 56.1±11.3 0.13±0.18

ICA [44]+KNN(E) [44] fMRI no No 62.8±12.3 0.26±0.23

RBM [44]+KNN(E) [44] fMRI no no 36.2±4.9 −0.23±0.11

LSTM [45] fMRI yes no 45.7±9.6 −0.15±0.14

GRU [45] fMRI yes no 45.2±7.5 −0.018±0.13

N.Sengupta, C.McNabb, N.Kasabov, B.Russel, Integrating Space, Time and Orientation in Spiking Neural Networks: A Case Study on 

Multimodal Brain Data Modelling, IEEE Tr NNLS, 2017.



10 environmental (CO, NO2, O3, SO2, and 

PM10, PM2.5, temperature, wind-direction 

average, wind-speed, and solar radiation). 

Personalised predictive modelling of individual risk of stroke

>1200 individuals

Stroke (2011-2012) 

Clinical records (37 variables)

How environmental risk factors can influence the risk of individual stroke 

occurrence?

Affected group of 169 individuals: (45%

female); 55% male; mean-age= 74.05> mean-age

non-affected group (70.4); had history of stroke in

close family member, overweight, older, smokers,

diabetic, and taking medication.

Maryam Doborjeh, Zohreh Doborjeh, Alexander Merkin, Rita Krishnamurthi, Reza Enayatollahi, Valery Feigin,

Nikola Kasabov, Personalised Spiking Neural Network Models of Clinical and Environmental Factors to Predict

Stroke, Cognitive Computation, COGN-D-20-00511R2, 26 , 2021, https://www.springer.com/journal/12559.

nkasabov@aut.ac.nz
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Personalised prediction of risk for stroke days ahead   

• SNN achieve better accuracy

• SNN predict stroke much earlier 

than other methods

• New information found about the 

predictive relationship of 

variables

nkasabov@aut.ac.nz

(N.Kasabov, M. Othman, V.Feigin, R.Krishnamurti, Z Hou  et al - Neurocomputing 2014)



Using ECOS and BI-SNN for PM results in a better predictive 

accuracy and good explainability

nkasabov@aut.ac.nz nk.kasabov@ulster.ac.uk

Application PM 
Other AI methods 

accuracy
n

Schizophrenia
Predicting formal diagnosis in next six months 
using gene expression measures from blood test

98% 92-97.5% 84

Mindfulness Treatment
Predicting response to depression treatment 
using EEG data

73%​ 48.5-58.5% 20

Methadone
Predicting treatment programme outcome using 
EEG data​

91%​ 60-63% 67

Stroke
Predicting stroke events using patient and 
environmental data​

94%​ 67.5-87.5% 1200

AD/MCI/normal
Prediction 2 years ahead 

91% 40% (LSTM) 175

mailto:nkasabov@aut.ac.nz
mailto:nk.kasabov@ulster.ac.uk


6. Discussions and future directions  

Advantages of BI-SNN:

1. Self-organised, evolvable  structure (no fixed number of 

layers/neurons, etc.)    

2. Event based (asynchronous), fast, incremental, potentially “life-

long”  learning.

3. Temporal (spatio-temporal) associations learned. 

4. Interpretability, e.g. TSK representation   

5. Low computational power   

6. Fault tolerance

Problems and limitations of BI-SNN

• Sensitive to parameter values

• Large number of parameters to be optimised

• No rigid theory yet.

• Ethical issues: www.mindthegap.ai

nkasabov@aut.ac.nz



Computational  Neuro-Genetic Modelling  (CNGM) 

- Benuskova and Kasabov (Springer, 2007) 

SNN that incorporate a gene regulatory network (GRN) as a dynamic parameter 

systems to capture dynamic interaction of genes (parameters) related to neuronal 

activities of the SNN.

- Functions of neurons and neural networks are influenced by internal networks 

of interacting genes and proteins forming an abstract GRN model.

- The GRN and the SNN function at different time scales.

nkasabov@aut.ac.nz

mailto:nkasabov@aut.ac.nz


Modelling simultaneously EEG and fMRI data is an open problem:

- different time scales

- different spatial resolution  

nkasabov@aut.ac.nz nk.kasabov@ulster.ac.uk

Spatial 

information 

Integrating multimodal neuroimaging data  

mailto:nkasabov@aut.ac.nz


Thank you!

For contacts: N.Kasabov (nkasabov@aut.ac.nz)  or  Ms Iman AbouHassan (iabouhassan@tu-sofia.bg)

The N3-BG group (Neuroinformatics, Neural networks and Neurocomputers)  

https://www.knowledgeengineering.ai/n3-bg

mailto:nkasabov@aut.ac.nz

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: 2. Neuroinformatics 
	Slide 9: 3. Artificial Neural Networks
	Slide 10
	Slide 11: Deep Convolutional Neural Networks
	Slide 12: Adaptable and explainable evolving connectionist systems (ECOS) (Evolving fuzzy neural networks ) 
	Slide 13
	Slide 14: Spiking Neural Networks   
	Slide 15: Brain modelling and brain-inspired systems
	Slide 16: The NeuCube brain-inspired SNN architecture for spatio-temporal brain-data    
	Slide 17:                         Spike encoding methods     A spike is generated only if a change in the input data occurs beyond a threshold    Silicon Retina (Tobi Delbruck, INI, ETH/UZH, Zurich ), DVS128: Retinotopic   Silicon Cochlea ( Shih-Chii Liu,
	Slide 18: Spiking neuron models 
	Slide 19: Methods for unsupervised learning in SNN  Spike-Time Dependent Plasticity (STDP)  (Abbott and Nelson, 2000).
	Slide 20: Methods for supervised learning in SNN Rank order (RO) learning rule (Thorpe et al, 1998)
	Slide 21
	Slide 22
	Slide 23: Example
	Slide 24: Capturing time-space knowledge as information exchange between clusters of neurons representing brain areas       - Clusters of highly connected neurons to input neurons; - Clusters of spiking activity spread from input neurons ;  - A dynamic gr
	Slide 25: Capturing knowledge representation in a BI-SNN through supervised learning with deSNN 
	Slide 26
	Slide 27: Neurocomputers: From von Neumann principles and Atanassov’s ABC Machine to Neuromorphic Hardware   
	Slide 28: Neuromorphic hardware systems (Neurocomputers) 
	Slide 29
	Slide 30: Brain Machine Interfaces using Brain-Inspired SNN 
	Slide 31:    Kasabov, N., Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence, Springer (2018), 750p.,  https://www.springer.com/gp/book/9783662577134     K.Kumarasinghe, N.Kasabov, D.Taylor, Deep Learning and Deep Knowledge Rep
	Slide 32: BI-SNN for neurorehabilitation   
	Slide 33
	Slide 34: NEMO-BMI  Our IICT/BAS/BG team
	Slide 35: Modelling brain EEG signals while working with a VR/AR. Cybersickness    
	Slide 36: Personalised modelling for predicting response to treatment  of drug addicts  (Class M - who take medication; class OP – who do not take medication)    Doborjeh, M., and Kasabov, N., IEEE WCCI/IJCNN, 2016 (Response to treatment of drug addicts u
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Personalised predictive modelling of individual risk of stroke
	Slide 44: Personalised prediction of risk for stroke days ahead     
	Slide 45:  Using ECOS and BI-SNN for PM results in a better predictive accuracy and good explainability  
	Slide 46: 6. Discussions and future directions  
	Slide 47: Computational  Neuro-Genetic Modelling  (CNGM)  - Benuskova and Kasabov (Springer, 2007)  SNN that incorporate a gene regulatory network (GRN) as a dynamic parameter systems to capture dynamic interaction of genes (parameters) related to neurona
	Slide 48: Modelling simultaneously EEG and fMRI data is an open problem: - different time scales -  different spatial resolution  
	Slide 49: Thank you!

