Advances in Neuromorphic Ecosystems

Alexander Dimitrov Department of Mathematics and Statistics WASHINGTON STATE UNIVERSITY OF VANCOUVER

> Lecture at the Third Summer School of the N3BG Group "Neuroinformatics, Neural networks and Neurocomputers", 30 April 2025, TU-Sofia, Bulgaria

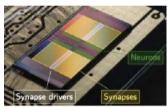
System selection

- Neuromorphic systems are relatively new and experimental.
- I tried to select neuromorphic systems that
 - Have relatively stable and evolving hardware
 - Have reasonable software support
 - Can scale (so some edge devices, but not many)
 - Are 'interesting' (usually event-based, so no GPUs or DNN accelerators).

Current neuromorphic systems

Digital

- Analog
 - BrainScaleS-2



DYNAPs (SynSense)

SynSense transitioned to digital architecture:
 Xylo and Speck

Good Source: https://open-neuromorphic.org/

- TU Dresden sem and Barm The University Of Manchester
- SpiNNaker2 (TU Dresden/ SpiNNCloud)
- Loihi (Intel)

- Akida (BrainChip)

Why not these?

- T1 (Innatera), ReckOn, Odin (Frenkel), Darwin3
 - Too new and/or research chips. Less development support.
- NeuroGrid, ROLLS-INI, etc.
 - Defunct. Anyway, mainly only the developer could program those so not much application impact.

- Nvidia, Google, Intel, Graphcore, etc.
 'IPU's
 - Mostly for DNNs. MAC & f()
 - Graphcore seems capable of SNN simulations.
- NorthPole (IBM)
 - TrueNorth was spiking and had dynamics; this is now just a lowprecision inference engine. Neuromorphic in local memory and a massive! NoC.

Tianjic

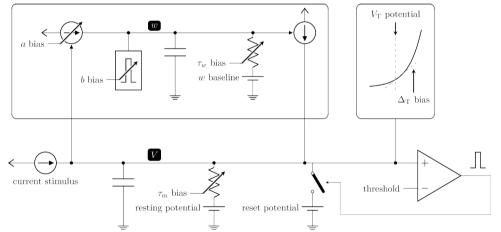
- Spiking, but no on-chip learning

What do these systems have in common?

- Neuron models are stateful, have intrinsic dynamics.
- On-chip learning supported (weight dynamics).
- Neurons communicate with events, sparsely in time.
- (and the usual) many cores, local memory, scalable NoC.

Analog-hybrid systems

- Neuron and synaptic dynamics implemented in analog electronics, NoC digital. Uses the natural physics of the elements.
 - E.g. BSC-2:
 - AdExp neuron model
 - Exp synapse model
 - nonlinear dynamics



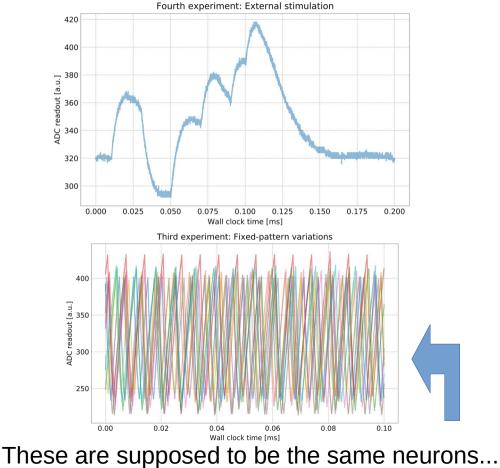
• Can be VERY fast and VERY energy-efficient.

Analog-hybrid systems

- Not for the faint-of-heart!
 - Unavoidable intrinsic noise. Fixed pattern variations. Dynamics depends on external conditions (e.g., T, E, B).
 - Like real neurons :)
 - Very robust algorithms needed!
 - From BSC2 site:

... the mismatch of semiconductor fabrication results in inhomogeneous properties of the computational elements.

... A default calibration is generated for every setup every night.



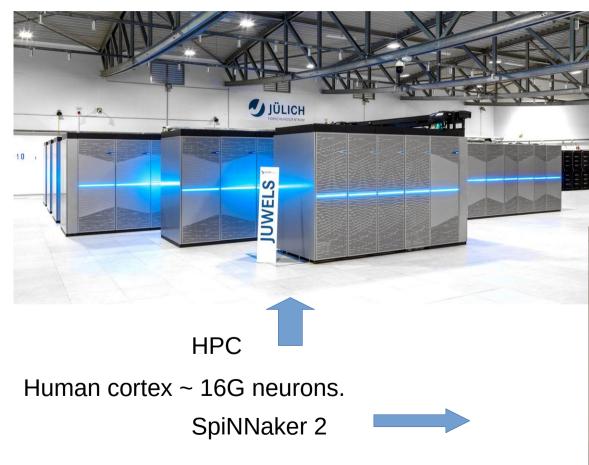
Software for analog

- PyNN works for BSC-2; generic AdExp SNNs. Common front end for digital neuromorpihc as well.
 - https://electronicvisions.github.io/documentation-brainscales2/latest/pynn-bra inscales/index.html
 - https://wiki.ebrains.eu/bin/view/Collabs/neuromorphic/BrainScaleS/
 - https://www.ebrains.eu/modelling-simulation-and-computing/computing/neur omorphic-computing/
 - DYNAP-SE2 is geared more towards edge devices. Python interfaces like Rockpool.
 - https://rockpool.ai/index.html
- Many entry-level examples provided to try.

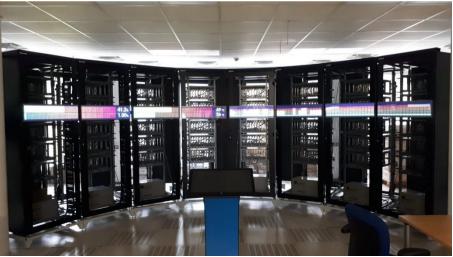
Digital neuromorphic

- Loihi and Akida are pure play SNN accelerators. SpiNNaker can also do that, but has more flexibility (different trade-offs). As noted, NorthPole is inference-only.
 - I see these as transition technology to Analog. But they can also solve many current complex problems.
- Main challenges:
 - Resource constraints (state size, parameter size, limited local memory)
 - Computing with stateful neurons
 - Computing with many small cores
 - Loihi's Hala Point: 140K neurocores, 1G neurons, 128G synapses. 6U rack box, 2.5 kW ...
 - SpiNNaker2: 10M ARM cores, ~1G neurons, 100G synapses. Room-size, 100kW or so
 - vs HPC: ~10⁵ CPU cores, ~1K neurons/core, so 100M neurons.
 with GPUs can get up to 1G neurons/100G synapses. Building-size, 20 MW

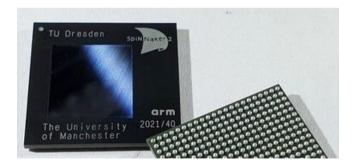
Comparative sizes for 1G neurons



Intel's Hala Point

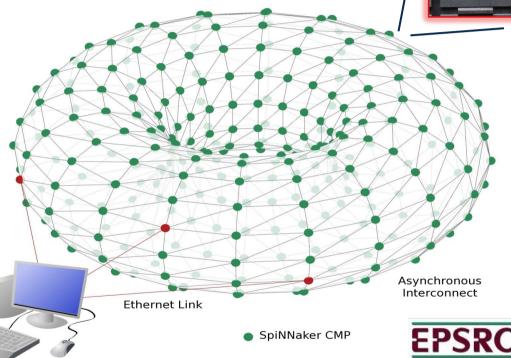


SpiNNaker 2 From Mayr's presentation at FZJ



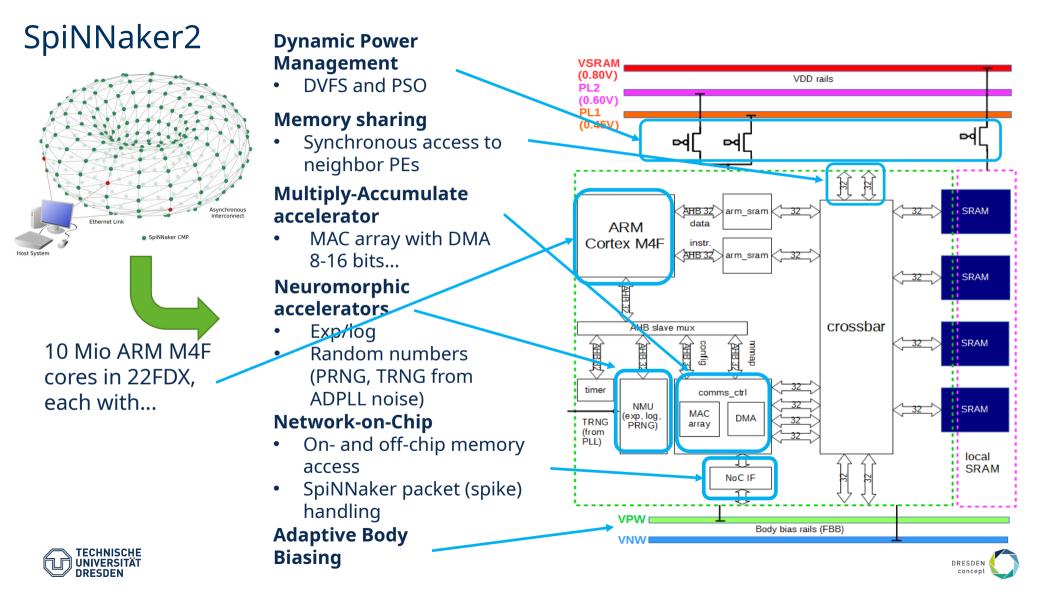
SpiNNaker 1

- Invented by Steve Furber, original ARM system architect
- A million mobile phone processors in one computer
- Strictly real-time architecture <1ms response time
- Able to model about 1% of the human brain...
- ...or 10 mice!

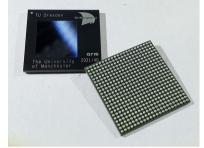


Host System

Furber, Steve B., et al. "Overview of the spinnaker system architecture." *Computers, IEEE Transactions on* 62.12 (2013): 2454-2467.

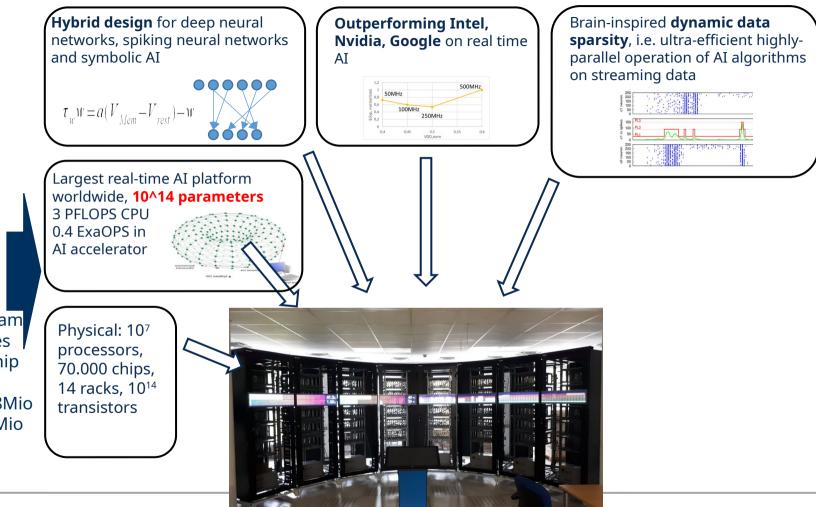


SpiNNaker2



SpiNNaker2 Chip:

- 153 ARM cores
- >100 person design team
- 22FDX Global Foundries
- Developed in EU flagship Human Brain Project
- Development cost: >38Mio
- Deployment cost: >13Mio



Update 3: SpiNNaker2 Software

SNN simulation using PyNN

- Will re-use large parts from SpiNNaker1 stack (pyNN.sPyNNaker)
- Current work: Adaption of low-level software
- Availability: 2023 for 48-node boards, earlier for single-chip system
- Lava integration -> BMBF project with Intel
- DNN processing using Apache TVM
 - Use TVM compiler to map large DNNs on SpiNNaker2 systems
 - Utilize machine learning accelerator for Conv2D, Dense and ReLU; other layer types supported by code generation
 - Can load DNNs trained in any common framework (TensorFlow, Pytorch, ...)
 - Status: SW devolopment started, examples on single chip expected in next half year
- Hybrid SNN/DNN
 - Light-weight Python interface for SNNs or hybrid networks on single chip
 - Available: now, already in use by 3 external groups
 - Serves a prototype for scalable Hybrid NN framework (combination of PyNN and TVM)

htvm

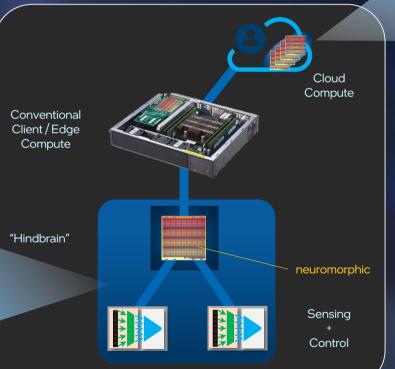
Still in development. Foundation with C++ on ARM.

1	from spinnaker2 import snn, hardware			
2				
3	neuron params = {			
4	"threshold":1.,			
5	"alpha decay":0.9,			
6	}			
7				
8	<pre>stim = snn.Population(</pre>			
9	size=10,			
10	neuron model="spike list",			
11	params={0:[1,2,3], 5:[20,30]},			
12	<pre>name="stim")</pre>			
13				
14	<pre>pop1 = snn.Population(</pre>			
15	size=20,			
16	neuron model="lif",			
17	params=neuron params,			
	-			

Loihi 2 From INRC presentations

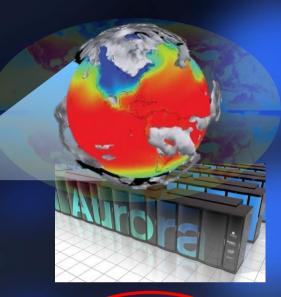
Research Vision

Integrate neuromorphic intelligence into computing products at all scales



Neuromorphic edge subsystem

Develop a new programmable computing technology inspired by the modern understanding of brain computation



Achieve brain-like efficiency, speed, adaptability, and intelligence

Deliver gains of **10⁴ or higher** in energy-delay-product*

* Combined latency and energy efficiency metric

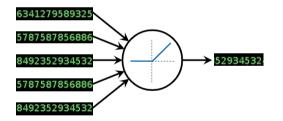
Exploiting dynamics at the neuron level

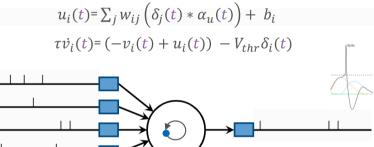
Maximize computation without data movement

Artificial Neuron (Stateless)

Spiking Neuron (Nonlinear Filter)

 $u_i = \sum_j w_{ij} f(u_j) + b_i$





State

Output spikes

Realized in Loihi, improved in Loihi 2

KEY PROPERTIES

Compute and memory integrated to spatially embody programmed networks Temporal neuron models (LIF) to exploit temporal correlation Spike-based communication to exploit temporal sparsity

Sparse connectivity for efficient dataflow and scalability

On-chip learning without weight movement or data storage

Digital asynchronous implementation for power efficiency, scalability, and fast prototyping

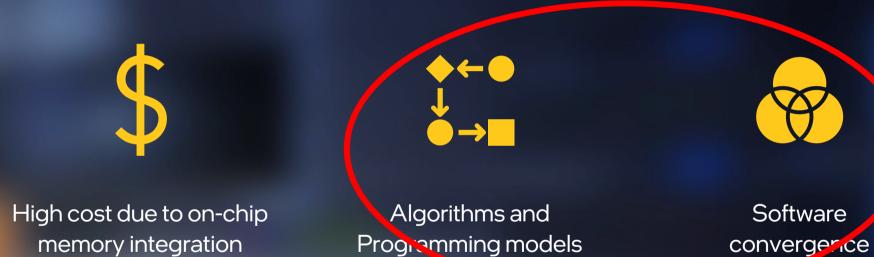
Yet...

No floating-point numbers No multiply-accumulators No off-chip DRAM

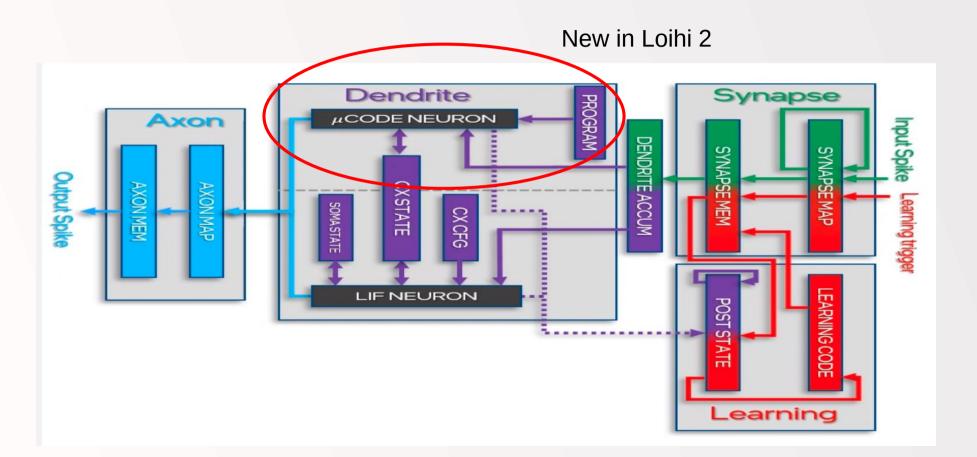
Fundamental to deep learning hardware Davies et al, "Loihi: A Neuromorphic Manycore Processor with On-Chip Learning." IEEE Micro, Jan/Feb 2018.

intel Neuromorphic Research Community

Challenges and Headwinds

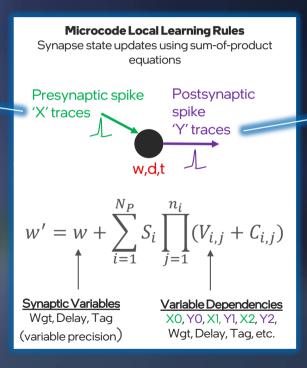


Loihi 2: Internal Neuron Model

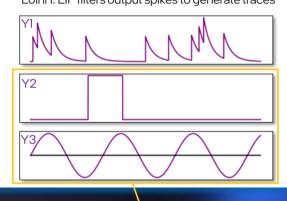


Enhanced synaptic plasticity for advanced online learning

Pre-synaptic Traces (X) Input spikes exponentially filtered to generate pre-traces Learning performs time-based pre-trace updates



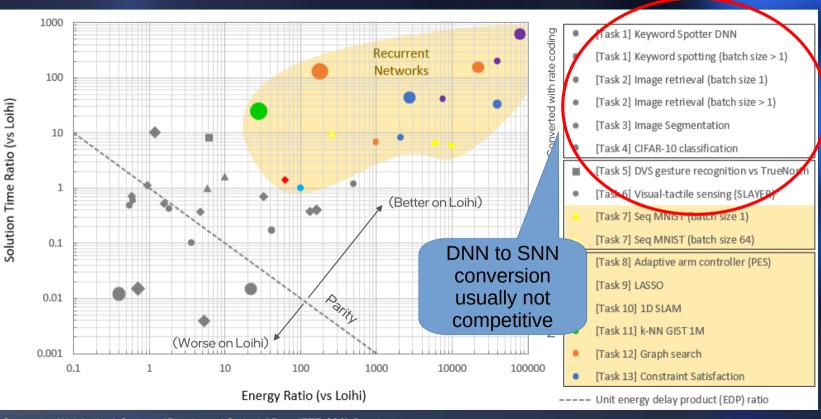
Post-Synaptic Traces (Y) Loihi 1: LIF filters output spikes to generate traces



Loihi 2 neuron microcode can write arbitrary signed values to post-traces ("third factors")

Novel recurrent networks give the best gains

Reference architecture CPU (Intel Core/Xeon) GPU (Nvidia) Movidius (NCS) TrueNorth



M. Davies et al, "Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook," Proc. IEEE, 2021. Results may vary.

Development platforms

- Lava https://lava-nc.org/ CPU, GPU and Loihi, plans for general neuromorphic
- Neural SNN simulators
 - NEST (python, C, GUI). No Loihi backend yet
 - Brian2 (python), with https://gitlab.com/brian2lava/brian2lava
 - PyNN (python). No backend yet
 - Nengo (GUI, proprietary scripting) https://www.nengo.ai/nengo-loihi/

https://www.intel.com/content/www/us/en/research/ neuromorphic-community.html inrc_interest@intel.com

Developing Theory of NC computing

- Hyperdimensional computing/Vector Symbolic Architecture (HD/VSA): Gayler, Kanerva
- Computational graphs/GNN
 - POG, EPG in Zhang et al., Nature, 15.10.2020
 - SGNN, Yin et al. AAAI-24

Emerging Programming Paradigms

- Direct mapping, CPU neuron model \rightarrow NC module
 - "ground truth" known from CPU, so many validation options.
- Optimization
 - Classical nonlinear, including DL with variants of grad descent (e.g. GDTT, surrogate gradient, eventprop)
 - Quantum optimizers (emulation)
 - Evolutionary Programming
- Continuous on-chip learning
 - Under research and development, some preliminary results

While ANN2SNN is a very efficient approach, the outcome is really suboptimal for SNN neuromorphic hardware (Loihi tests).

Emerging libraries

- Pre-trained modules
 - Edge processing
 - LSTM
- SNN transformers
 - Spikeformer; Event transformer
- LLM
 - SpikeGPT, SpikingBERT

For now training still off-line, on classical architectures.

Lava algorithm libraries

lava-dl

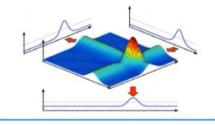
- Direct & HW-aware training of event-based DNNs
- Rich neuron model library (feed-forward & recurrent)

lava-optimization

- Family of constraint optimization solvers
- Today: QP, QUBO, LCA, BO
- Future: MPC, ILP, ...
- Standalone use or as part of Al applications

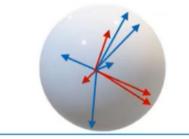
lava-dnf

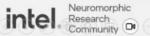
- Design models with attractor dynamics
- Stabilize temporal data
- Selective data processing
- Dynamic working memories



lava-vsa (WIP)

- API for algebraic model description for VSAs
- Library of data types and operations (composition, binding, factorization, ...)





Constraints in developing for Loihi 2

- Algorithm level
 - Limited neural resources
 - Up to ~1 million neurons per chip
 - More restricted depending on topology and connectivity
 - Restricted topology of computational graphs (axon, synapse, neuron)
 - Best suited for sparse connectivity and data
- Process level
 - Access to local memory only
 - Fixed point arithmetic, limited precision (no floating point)
 - Limited instruction set
 - No division (although can be programmed)
 - No transcendental functions (e.g., logarithm, exponential, trigonometric)

But note that $x'(t) = -x(t)/\tau$ is the differential form of $exp(-t/\tau)$

Advantages of SpiNNaker2 for non-AI Numerical Problems

Related projects on Loihi as well, w/o the quantum emulation.

- 1. Extreme parallelism of simple operations (think neurons...)
- 2. (Search for) Sparse solutions in high-dimensional numerical spaces
- 3. Stochastic computation/stochastic state representations
- 4. <u>Solving systems of locally coupled differential equations in a mesh/network</u> <u>topology (e.g. Neuron models, but also FEM and similar)</u>

	НРС	SpiNNaker2	Quantum Computing
Parallelism	10⁵ cores	10 ¹⁴ synaptic updates/msec	>10 ²⁵ quantum entanglements
Stochastic Computation	Only in software, 10 ¹⁰ stochastic decisions/sec	Hardware accelerators, 10 ¹⁷ stochastic decisions/sec	Inherent in Qubits, >10 ³⁰ stochastic decisions/sec
Sparsity in high- dim spaces	Not supported	Fully supported	Fully supported
FEM-type tesselations	10 ⁵ elements, boundary condition updates us to ms	10 ⁷ elements in torus, boundary condition updates <10us	Potentially very fast convergence, but tessalation limited to #Oubits: 10 ² -10 ³

Conclusions

- Neuromorphic ecosystems are developing at a fast pace.
- Currently most rapid progress for digital neuromorphic
 - Good blend of performance/power and software support for Loihi, Akida and SpiNNaker2.
 Different tradeoffs in speed/energy/flexibility.
- Emerging workflows
 - Computational graphs, SGNN
 - Optimization
 - Physical simulations
 - Edge/robotics event-based AI
- Excellent review in *Neuromorphic hardware for sustainable AI data centers* https://doi.org/10.48550/arXiv.2402.02521