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• Quantum mechanics – physics of particles at subatomic scales

• “There's Plenty of Room at the Bottom” (APS Meeting, 1959) 
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Vision

Richard Feynman

“When we get to the very, very small world – say circuits of seven atoms – we  

have a lot of new things that would happen that represent completely new 

opportunities for design. Atoms on a small scale behave like nothing on a large 

scale, for they satisfy the laws of quantum mechanics…”
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Quantum Mechanics

• Quantum mechanics is the theory that describes the behavior of microscopic systems, such as 

photons, electrons, atoms, molecules, and others

“Nobody understands quantum mechanics!” – Feynman

• Quantum states or wavefunction, 𝜓 , evolve over time according to the Schrödinger equation:   

                                                             𝑖ℏ
𝜕

𝜕𝑡
𝜓 = ෡𝐻 𝜓 , where 𝐻 is the Hamiltonian 

• This implies that time evolution is described by unitary transformations: 𝜓  ෡𝐻 𝜓

• Quantum systems are inherently nondeterministic and probabilistic in nature, a fact that has been 

extensively confirmed through experiments
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Quantum Theory & Technology Evolution

1900’s

1925: Schrödinger 
Equation proposed 

1929: Dirac’s proposal to 
simulate chemical systems  

1935: The EPR Paradox, a thought experiment 
designed to demonstrate an inherent paradox in the 
early formation of quantum theory, later becomes the 
best-known example of quantum entanglement

1965: Feynman theories on 
quantum electrodynamics  

1980
1981: Feynman proposes 
quantum phenomenon 
to perform computation

1984: IBM’s Quantum 
Cryptography

1994: P. Shors’ prime 
factorization algorithm 

1996: Grover’s database 
search algorithm

1985: David Deutsch described 
first universal quantum computer

1998: First working two-
qubit quantum computer 
demonstrated

2001: A seven-qubit 
experiment conducted 
to factor the number 15

2010

2010: D-Wave commercial 
quantum computing facility

2016: IBM’s QPU 
availability on cloud 
for R&D experiments

2017
1. D-Wave’s 2000Q system 

for commercial use
2.  IBM’s first 50Q QPUs
3. Google’s QC packages 

for Chemistry 
4. Microsoft’s QC 

programing languages  

2018
1. Intel’s 49Q chip 

development
2. Google-Cirq

2019
1. Google Sycamore claimed 

quantum supremacy 
2. IBMQ’s first commercial 20-

qubit system

2020: Chinese scientists 
claimed Jiuzhang achieved 
another quantum supremacy 

2025

2021: IBM's Eagle 
Processor

2024: Google's 
Willow Processor

2025: Amazon's Ocelot 
Chip and Industry Growth

2025: The UN 
declares 
Internation 
year of QST

1964: Bell’s 
Theorem



Quantum Computer

• A computer that uses the laws of quantum mechanics to perform massively parallel computing through 

the principles of superposition, entanglement, and decoherence 

• The smallest unit of information in a quantum computer – Quantum bit or Qubit

• A qubit may be in the “on” (1) state or in the “off” (0) state: 𝜓 = α 0 + β 1 , α 2 + β 2 = 1, 
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IBM Quantum Computer

Superconducting device: 153 qubits  

IQM Quantum Computer

Superconducting device: 150 qubits

IonQ Quantum Computer

Trapped ion device: 36 qubits 

0 =
1
0

  

1 =
0
1

A single-qubit visualization 

as a unit vector on the plane 
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Growth & Investment Landscape 
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Bits & Qubit

Classical bits: 

• It can be in two distinct states, 0 and 1 

• It can be measured completely 

• It can not be changed by measurement 

• It can be copied and erased

Quantum bits (Qubits): 

• can be in state 0  or in state 1  or in 

any other state that is a linear 

combination of the two states

• It can be measured partially with given 

probability 

• It can be changed by measurement

• It can’t be copied and erased
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Quantum Principles

• Superposition

o A quantum state is in a linear combination of other 

     distinct quantum states, forms a new quantum states

o Superposed states measure in equal probability

o Provides 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚 (multiple operations simultaneously)

• Entanglement 

o A pair of particles is entangled when the quantum state of 

     each particle cannot be described independently of the 

     quantum state of the other particle

o Entanglement can’t be shared no matter how far they are apart 

o Enables strong correlation between the particles 

o Enables 𝑠𝑝𝑒𝑒𝑑 − 𝑢𝑝 (allows for faster algorithm - Shor)



Gates & Circuit 

• Quantum states ∈ Hilbert space, form complex vector spaces (follow tensor algebra rules)

• Quantum computation uses quantum gates
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A 2-qubit quantum circuit consists of a H-gate, a CNOT-gate, 

and a measurements operator, and the circuit result.
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• Quantum gates are unitary and reversible 𝑈𝑈† = 𝐼

•  Rotation operators: 𝑅𝑋 θ = 𝑒−
𝑖θ

2
𝑋, 𝑅𝑌 θ = 𝑒−

𝑖θ

2
𝑌, 𝑅𝑍 θ = 𝑒−
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2
𝑍
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𝑖 0

              =
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Famous Quantum Algorithms

Algorithms Applications Potential application field 

Shor’s Algorithm RSA decryption Cryptography

HHL Algorithm Inverse transform of a matrix Machine learning

Grover’s Algorithm Search problem Search in unsorted databases 

Variational Quantum Eigensolver 
(VQE) 

Eigensolver Medicine & New material finding

Quantum Approximate 
optimization Algorithm (QAOA)

Optimization Financial & Satisfiability problems

Quantum Annealing Algorithm Optimization Machine Learning & Financial 

Variational Quantum 
Algorithm/Circuit (VQA/VQC)

Classical-Quantum Models Healthcare & Machine learning  

Cho et al., 2021; Jha et al.,2023
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Quantum Computing in NISQ Era 

NISQ: noisy intermediate-scale quantum (Preskill, 2018)

• Noisy: processors sensitive to their environment

• Scale: quantum processors up to 1000 qubits

https://en.wikipedia.org/wiki/Quantum_machine_learning

CQ: hybrid classical-quantum model!

https://en.wikipedia.org/wiki/Quantum_machine_learning
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• A variational quantum circuit design for CQ implementations  

Hybrid CQ Approach: VQC  

𝒙 ෝ𝒚

process

Mitarai et al., 2018; Cerezo et al., 2021
• Ansatz parameters are trainable
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Quantum Kernel   

• Kernel: encode inputs from lower to 
higher dimensional feature space 

• There exists a direct mathematical 
link between quantum models and 
kernel methods

• Kernel method: access to the feature 
space is facilitated through kernels 
or inner products of feature vectors

• Quantum kernel: access to the 
Hilbert space of quantum states is 
given by measurements process, 
which can also be expressed by 
inner products of quantum states

arXiv:2101.11020
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Quantum Kernel Implementation  

• Data encoding: process to encode classical input into the quantum state space using a quantum feature map

• The choice of feature map is crucial and varies on the datasets provided  

QKE: ψ 𝑥𝑖

→
ψ 𝑥𝑗

→ 2

  = 0⊗ 𝑈† 𝑥𝑖

→
𝑈 𝑥𝑗

→
0⊗

2

Havlíček et al., 2019

• Data-encoding of input vectors (𝑥
→

) into quantum 
states,

• ψ 𝑥
→

= 𝑈Φ(𝑥
→

)𝐻⨂2𝑈Φ(𝑥
→

)𝐻⨂2|0⟩⊗2 

• The unitary transformation 𝑈Φ 𝑥
→

 is given by, 

𝑈Φ 𝑥
→

= exp i ෍
𝑗=1

𝑛

𝛼𝑗𝜙𝑠 𝑥
→

Πσ𝑗 ∈ {𝐼, 𝑋, 𝑌, 𝑍} , 

          where Φ 𝑥 = 𝜙1 𝑥 , 𝜙2 𝑥 , 𝜙1,2 𝑥

• σ𝑗 and 𝛼𝑗  represent key hyperparameters and play an 

important role in enhancing kernel performance
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Feature Maps 

• A 𝑛𝑜𝑣𝑒𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝 designed to encode the data into a quantum state space as:

                𝐹1:      𝜙 𝑖=1=2 𝑥 = 𝑥𝑖  𝑎𝑛𝑑 𝜙 1,2 𝑥  =
𝜋

1+𝑐𝑜𝑠 𝑥1 1+𝑐𝑜𝑠 𝑥2  

• Suzuki et al., (2020) proposed 𝑓𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 feature map: 

𝐹2:   𝜙 𝑖 𝑥 = 𝑥𝑖  𝑎𝑛𝑑 𝜙 1,2 𝑥 = 𝜋𝑥1𝑥2

                       𝐹3:   𝜙 𝑖 𝑥 = 𝑥𝑖  𝑎𝑛𝑑 𝜙{1,2}(𝑥) =
𝜋

2
(1 − 𝑥1)(1 − 𝑥2) 

             𝐹4:  𝜙{𝑖} 𝑥 = 𝑥𝑖  𝑎𝑛𝑑 𝜙 1,2 (𝑥) = 𝑒𝑥𝑝
|𝑥1−𝑥2|2

8

𝑙𝑛 𝜋

             𝐹5:   𝜙 𝑖 𝑥 = 𝑥𝑖  𝑎𝑛𝑑 𝜙{1,2}(𝑥) =
𝜋

3 𝑐𝑜𝑠 𝑥1 cos 𝑥2  

                     𝐹6:     𝜙 𝑖 𝑥 = 𝑥𝑖 𝑎𝑛𝑑 𝜙{1,2}(𝑥) = 𝜋𝑐𝑜𝑠(𝑥1) cos(𝑥2) Suzuki et al., 2020 

Jha et al., 2025
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A Case Study with EEG-BCI Data

Leeb et al., 2020
• BCI Competition IV dataset 2(b) is an open datasets with  

three bipolar 𝐸𝐸𝐺 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 {𝐶3, 𝐶𝑍, 𝐶4}

• The data experiment included 9-subjects for two motor 
imagery tasks: 𝐿𝐻 & 𝑅𝐻 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡

• All five-sessions data were used with preprocessing and two 
CSP components were used for binary classification 

𝑆𝑢𝑏 𝑭𝟏 𝑭𝟐 𝑭𝟑 𝑭𝟒 𝑭𝟓 𝑭𝟔 𝑆𝑉𝑀𝐿 𝑆𝑉𝑀𝑅 𝑁𝐵 𝐿𝐷𝐴

1 69.19 66.30 68.10 70.46 63.58 69.93 69.37 69.74 65.76 69.38

2 59.58 56.96 59.22 58.36 56.44 59.04 58.87 59.05 56.25 59.39

3 54.17 50.95 49.24 51.89 52.67 49.42 51.89 48.86 49.80 52.46

4 91.08 87.25 89.23 90.36 88.80 91.07 90.65 90.79 89.37 90.79

5 70.68 70.53 71.14 70.22 67.02 70.68 70.07 69.92 67.32 69.46

6 78.95 73.08 75.84 79.31 77.84 77.48 78.94 78.77 78.21 78.94

7 66.15 67.51 66.32 68.02 67.35 67.51 67.51 68.02 68.37 67.00

8 77.59 72.94 76.51 77.95 74.19 77.76 76.88 77.94 74.36 76.15

9 78.29 76.88 76.86 77.40 74.72 79.79 76.51 78.11 73.30 77.04

Avg 71.74 69.15 70.27 71.55 69.17 71.40 71.18 71.24 69.19 71.17
Jha et al., ICONIP 2024
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A Hybrid SNN-QC Model

(i)   input EEG signals are transformed into spike trains 
(ii)  spikes are mapped onto a spatiotemporal filter (SNNCube) using known locations (i.e. EEG channels 
       locations) and learned synchronously 
(iii) an output module provides trained spiking features in the form of spike frequency state vectors
(iv) these spiking features are used as input vectors to quantum kernel classifiers

Kasabov, 2014; Jha et al., 2025
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SNN-QC Results

Jha et al., 2025
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Results…

Jha et al., 2025
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Hyperparameter Analysis

Jha et al., 2025

• Hyperparameter analysis: the impact of tuning α-hyperparameter on the  classification performance of spike 
frequency state vectors
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Feature Map & Decision Boundary 

• Feature maps can capture 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 in 
datasets

• They provide an 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 of how an 
encoding function may impact data classification

• Quantum kernels facilitate the formulation of 
𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒𝑠

• With appropriate hyperparameter tuning, QKE can 
lead to more 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠

Jha et al., ICONIP 2024
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Result Highlights 

• Hybrid classical–quantum models can be useful for developing quantum-enhanced classification methods, such as 

SNN-QC, other classifiers

• Feature maps are capable of capturing complex patterns in datasets

• Quantum kernels exhibit complex decision boundaries, resulting in improved classification performance

• With proper hyperparameter tuning, the performance of quantum kernels can be significantly enhanced

• Future work will focus on utilizing additional datasets to generalize the presented findings and to further explore 

hyperparameter sensitivity

• There is significant potential for expanding the future applications of Quantum ML to solve complex, and real-world 

problems

• The generalization of encoding functions remains a challenge and warrants more in-depth analysis
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Concluding Remarks

• Algorithm: Hybrid algorithms can be seen as complementary to one another, thereby enhancing 

the potential of quantum computing for machine learning applications

• Technology: Quantum Processing Units (QPUs), once fully developed and operational, could be 

highly influential and energy-efficient. Some early case studies already support this hypothesis, 

albeit on a small scale
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Resources: Open Source 

https://www.xanadu.ai/products/pennylane/ 
https://www.ibm.com/quantum 

https://www.xanadu.ai/products/pennylane/
https://www.ibm.com/quantum


References/Credits 

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge University Press, 2002.

[2] Feynman, R. P., 1982. Simulating physics with computers. Int. J. Theor. Phys, 21, 467–488. 

[3] Grover, L. K., 1997. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 79, 325. 

[4] Shor, P. W., 1994. Algorithms for quantum computation: discrete logarithms and factoring proceedings. In Proc. 35th Ann. Symp. Found. of Comp. Sc., 124-34.

[5] Schuld, M., Sinayskiy, I., Petruccione, F., 2015. An introduction to quantum machine learning. Contemp. Phys. 56, 172–185.

[6] Mitarai, K., Negoro, M., Kitagawa, M. & Fujii, K., 2018. Quantum circuit learning. Phys. Rev. A 98, 032309.

[7] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, et al., 2021. Variational quantum algorithms. Nat Rev Phys 3, 625–644.

[8] Cho, Chien-Hung, et al. "Quantum computation: Algorithms and applications." Chinese Journal of Physics 72 (2021): 248-269.

[9] Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S., 2017. Quantum machine learning. Nature 549, 195–202.

[10] Kasabov, 2014. NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neur. Netw., 52, 62-76.

[11] Jha, et al., From Quantum Computing to Quantum-inspired Computation for Neuromorphic Advancement--A Survey. Authorea Preprints (2023).

[12] Jha, et al., Performance Analysis of Quantum-Enhanced Kernel Classifiers Based on Feature Maps: A Case Study on EEG-BCI Data. ICONIP, Springer (2024).

[13] Jha, et al., A Hybrid Spiking Neural Network-Quantum Classifier Framework: A Case Study Using EEG Data. Research Square Preprint (2025).

[14] Havlíček, et al., Supervised learning with quantum-enhanced feature spaces. Nature 567.7747 (2019): 209-212. 

[15] Suzuki, Yudai, et al. "Analysis and synthesis of feature map for kernel-based quantum classifier." Quantum Machine Intelligence 2 (2020): 1-9.

[16] http://its2.unc.edu/divisions/rc/training/scientific/short_courses/Shell_Scripting.ppt

[17] https://www.xanadu.ai/products/pennylane/ 

[18] https://www.ibm.com/quantum  

[19] https://en.wikipedia.org/wiki/Quantum_machine_learning 

30/04/2025 N3BG Summer School 2025, TU Sofia 25 

http://its2.unc.edu/divisions/rc/training/scientific/short_courses/Shell_Scripting.ppt
https://www.xanadu.ai/products/pennylane/
https://www.ibm.com/quantum
https://en.wikipedia.org/wiki/Quantum_machine_learning


https://quantum2025.org/
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Thank you for your attention!
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