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“I thought the neatest idea in neural networks
was Grossberg’s Adaptive Resonance Theory
(ART) that you learn only if you resonate.”

Bart Kosko

In: Anderson, J.A. & Rosenfeld, E. (Editors). (1998) Talking Nets: An
Oral History of Neural Networks. The MIT Press, Cambridge, MA.
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Article history: This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network
Available online 21 September 2019 models used to perform the three primary machine learning modalities, namely, unsupervised,
Keywords: supervised and reinforcement learning. It comprises a representative list from classic to contemporary

ART models, thereby painting a general picture of the architectures developed by researchers over the

ﬁjua;;]r\.irﬁéesonancetheory past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive
Classification characteristics such as code representation, long-term memory, and corresponding geometric inter-
Regression pretation are discussed. Useful engineering properties of ART (speed, configurability, explainability,
Reinforcement learning parallelization and hardware implementation) are examined along with current challenges. Finally, a
Survey compilation of online software libraries is provided. It is expected that this overview will be helpful

to new and seasoned ART researchers.
© 2019 Elsevier Ltd. All rights reserved.
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Each ART module
performs ‘hypothetico-
deductive reasoning’.

The NN ‘knows’ if it has
seen this x, or similar,
before. (E.g., “Similarity
of 91%”).

The same about y.
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Eventually, a correct
matching is identified.
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And learning takes
place.

(The relevant
connections among
neurons are changed.)
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ARTD
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e The ARTMAP NN has huge advantages and
one handicap —

* It could not perform error-based y-value
learning

e But only class-membership learning



Pas

ARTa

Fi?

Fo?

A new NN is

proposed...







dy,

vitl+J
dt !

dy;

7’17 bi(l —z1) — aayz

dz
thz(l 22) — 2222
Iw
27 vit+ya
dt
di V4t 022
di s
Iy
as ys+ (1 —ys)ys — (vs + 1)ya
dt
Iv
o Yo b (L= y6)ys — (v6 + 1)y
dt
op = [ys]
2 02 = [ve] "
——— b‘: A
- - ~ “
Yo - >

L
- - I ‘ Y o — b .u"
- "rnr"/ . S .
1 r ] My
i ‘L'L.t-

Grossberg, S.(1972). Gated Dipole Model.

Emotion in the
leading channel

Opposite emotion in the
off-channel




dy,

=-w+I+J
dr !

dyy
dt

=-n+tl

dz
*17/71(1 z1) — 1z

dt
dz
== byl — z 2122

dr ha( )
dvs s
- vit+vizi
dvy

Emotion in the Opposite emotion in the o ya -+ 222

leading channel off-channel

Grossberg, S.(1972). Gated Dipole Model.




Covid 19

S

~}5  :

A

: ) -
-~ )w. -

-
¥ -

- —
e

N e -

Sl
Y e

e

International
Trade




The Gated Dipole neural circuit model

Explains the rapid generation of positive and
negative emotions in response to surrounding
opportunities and threats.



GD Useful Properties

1. Needs very few data in a non-stationary world.

2. Explains the mechanism of reaction to external
shocks.
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Abstract

‘We address the need to develop efficient algorithms for numerical simulation of models, based in part or entirely on adaptive resonance theory.
We introduce modifications that speed up the compatation of the gated dipole ficld (GDF) in the Exact ART neural network. The speed increase
of our solution amounts to at keast an order of magnitude for fields with more than 100 gated dipoles. We adopt a “divide and rule’ approach
towwards the original GDF differential equations by grouping them into three categories, and modify each category in a separate way. We decouple
the slow-dy namics part — the neurotransmitters from the rest of system. solve their equations analytically, and adapt the solution to the remaining
fast-dynamics processes. Part of the node activations ane integrated by an unsophisticated numerical procedure switched on and off according o
rules. The remaining activations are calculated at equilibrium. We implement this logic in a Generalized Net (GN) — a tool for parallel processes
simulation which enables a fresh look at developing efficient models. Owr software implementation of generalized nets appears to add little

computational overhead.
Ty 2006 Elsevier Ltd. All rights reserved.

Keywords: Gaed dipode field: Adaptive resonance theory; General med net

1. Introduction

The continuous-time behaviour of neural circuits is often
described with systems of ordinary differential equations,
usually integrated numerically as their complexity rules out
analytical solutions. Todays software packages that do this are
of high quality but require substantial computational resources.
Naturally, a demand develops for algorithmic modifications
aimed at efficiency.

One example for a set of computationally intensive tasks
are the models based on adaptive resonance theory (Grossherg
(1976); for an overview on ART see for example Carpenter and
Grossherg (2002)). Their implementations have addressed the
need for computational economy in a number of ways. One
has been to retain differential equations for only the adaptive
weights and use equilibrium solutions for all activations
as in ART 2 (Carpenier & Grossherg, 1987). ART 2-A
(Carpenter, Grossberg, & Rosen, 1991) has excluded the

* Comresponding awthor. Tel: +359 971 10022431
E-mail address: g mengov@ feboani-sofiabg (G Mengovk

OE93-p08IF'S - see front matier (€ 2006 Flsevier Led. All rights reserved.
dioi: 10, 1016/ neunet. 2006.05.03 1

differential equations altogether In some recent examples
(Grossberg & Raizada, 2000; Grossberp & Seiw, 2003;
Grossherg & Williamson, 2001) the fasiest cell reactions have
been computed at steady state. other activity equations have
been solved with the Runge—Kutta—Fehlbarg 4-5 method, and
adaptive weights have been solved at a reduced time scake
with Euler's method. However, computational complexity still
remains an issue that limits simulations to melatively small
newurdl networks. In the case of a complex model with even
moderate dimensionality one may have a situation where “each
simulation. . . takes from a day to a month to run on a 1.4 GHz
Athlon processor” (Grossherg & Seitz, 2003).

Some ART implementations solve numerically all differ-
ential equations but this approach has worked for relatively
small-scale tasks as in Exact ART (Raijmakers & Molenaar,
1994; Raijmakers, van der Maas, & Molenaar, 1996; Raijmak-
ers & Molenaar, 1997). These authors have developed a real-
istic continuous-time model and have used a software package
for stiff problems. Naturally, their implementation requires a
lot of computing resources. Raijmakers and Molenaar did not
consider it as a problem because their objective had not been

ercom/locate/neamnet
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Fig. 1. The Raijmakers & Mobenaar model of the gated dipoe fieid

(1997) to facilitate the understanding of our paper. The mode]
is shown in Fig. 1.

Note that this GDF configuration differs from what
Grossherg (1980) proposed — here the transmitter change is
also function of activity y3 rather than ¥1 only, due to the
feedback y5 — y1 (Fig. 1). Raijmakers and Mol naar { 1994)
needed this to implement GDF function No 3 from above, Other
gaed dipoke arrays that fulfill the same three functions, for
example (Leven & Levine, 1996), may also benefit from this
change (Fig. 1) and hence from all the modifications proposed
in this paper.

2.2, Modificarions

Our approach sought to achieve computational efficiency
due to joint action of three modifications to Egs. (1}-(8),
discussed in the following sections. We implemented the GDF
in a generalized net operating in a fixed discreie-time scale.
Its time sep coincided with that of the numerical integration
procedure. In our further discussion we rely on the fact that the

computation process is stepwise.

2.2.0. Neurotransmitters computed with an analysical formula

‘We solved the neurotransmitter Eqs. (7) and (8) analytically
and adapled the boundary value solution to account for a
continuously changing input When an arousal burst causes
GDF reset, all dipolkes compete for a short period. One
dipole wins and its y5; stays active long enough to updae
its connected memory weights. During that period z1; is
consumed, while all other transmitters z1;. j # J. refill
towards equilibrium. Thus, for some time the GDF operates ina
regime when its slow est process is continuously changing while
its fast node activations stay constant. The signals affecting the
release and replenishment of z1 are constant

Consider the inieraction in the jth pathway y1; — z1; (j
may also be J). The inputinto z 1 ; depends on node y1; (Fig. 1)
and is §1; = [yl ; — I']" as per Eq. (7). With this substitution
Eq. (7} becomes

1dz

=By —zl) — Slzl; (9)

Let §1; change at moment fg and stay constant for long
enough. Term 51 denotes the input value at time step & — |
and 517 atsg. While in general 51 ; may change abruptly. z1;
cannot, and therefore

2ljitg — 1) = z1 (1) (10
For §1; = const. Eqg. (9) has this solution:
e By new )
:l,(r}_—3+Sl}liexp(—(r—m1(51j +ﬁ}e:]
By new )
+W[|_ap(_(r_rn}[51; +|ﬂ)e)j|. an

Grossberg (1984) used essentially the same formula to
describe ransmitier release for a new sustained input. Eq.
(11} expresses the gradual shift of z1; from equilibrium with
5199 o equilibrium with S15™. If the rate of input change
is high the ransmitter does not have time to reach its new
asymptoe By /(f + S1T™), and the formula is inapplicable.
However, with a modification, the latier can account for a
continuously changing input Note that Eq. (11) can take S1%™,
corresponding to time siep fo. and cannot take S15'* for g — 1 as
the transmitter could not habituate. We introduce an equivalent
hypothetical §19¢ defined as the signal which, had it been
maintained for sufficiently long, would have equilibrated the
transmitter exactly to its value at m — 1. In other words, we
consider z1j(sm — 1) being the product of a different history
but with the same outcome. In that “altemative past’. a finished
habituation produced ‘mock” equilibrium
By
2l — 1) 7o

Therefore the needed equivalent value is

ad_ Bly —zljln—1)

4 zljim—1

In summary, at each time moment we calculate the new
zlj in two steps. First, the actual previous zlj{m — 1) is
used to determine an adjusted previous $199. Then in the
second step the new z1(1p) is computed by Eqg. (11) with
§19 and $15™. The same is done with transmitier z2;. This
procedure decouples Eqgs. (7) and (8) from the rest of the system
(Section 2.1). In practice Sl_"?"d can be computed at a slower
time step, for example only at moments when the reset signal
Ap is activated and then switched off. And even less frequent
S‘]_‘;‘ﬂcalculaljon can be satisfactory, for example only in the
events of winner change.

K

222 Fast node activations

‘We simplify Eqgs. (3). (4) and (6) by setting the derivatives
to zero. The error thus inroduced vanishes very quickly and
has no effect on the circuit performance. It is seen from Fig. |
that nodes ¥3; and y4; receive signals from nodes y1; and y2;
conveyed by transmitters z1; and z2; respectively. Grossherg
and Gutowski (1987) and Grossberg and Schmajuk (1987)
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This paper presents an experiment, which builds a bridge over the gap between newsoscience and
the analysis of economic behaviour. We apply the mathemarical theory of Pavlovian conditioning,
known as Recurrent Associative Gated BIP&'& (READ), o BDBUSE consumer choices in a computer-
L Supplier reputatkons, consumer satisfaction, and customes reactions are operationally
defined and, together with prices, relared to READ's neural dynambcs. We recorded our partecipants’
decisions with their timing, and then mapped those decisions on a sequence of events generated by
the READ mdel. To achieve this, all constants in the differential equations were determined using
simalared annealing with data from 129 peaple. READ predicred correctly 96% of all consumer chosoes in
a calibeation sample (n = 1290), and 7% in a test sample (0 = 903), thus outperforming logit models.
The rank correlations between self-assessed and dipole-generated consumer satisfactions were BO% in
the calibration sample and TEX in the test cample, surpassing by a wide margin the besrt lineas regression

el

0 2008 Elsevier Lid. All rights reserved.

1. Introduction

John Watson, founder of behaviourism, is quoted to have said
in 1922, “The consumer is to the manufacturer, the department
stores and the advertising agencies, what the green frog is to
the physiologist” (DiClemente & Hantula, 2003). Many decades
later, we cannat but agree with this provacative insight, although
we know a lot more about consumer behaviowr, its conditioning,
and economic psychology in general. Today fMRI methods help
us discover how brain systems interact when we think about
economic decisions (see for example Camerer, Loewenstein, and
Prelec (2005)). Yet, these studies still try to locate regions in the
cortex involved in forming emotions, judgments, and decision
making [cf. Winkielman, Knutson, Paulus, and Trujillo {2007)).
It might be advantageous to complement such an observational
approach, or even step aside from it for a while, by using more
extensively the available theoretical models.

In this paper, we present experimental evidence that the math-
ematical theory of Pavlovian conditioning, known as Recurrent As-
sociative Gated Dipole (READ) (Grossberg & Schmajuk, 1987) is
able to capture essential features of consumer behaviour. A com-
puter based experiment showed how a supplier of a fictitious

* Comresponding authar. Tel- 358 B8TT65632; fax: +290 20730841,
£-mail address: 5 me ngovteb.ani-sofia b | €. Mengov).

08936080/ = see front matter © 2008 Elsevier Led. All rights reserved.
i 1001016 neuret. 2 008 08,006

service provoked satisfaction and disappointment, and gradually
built its own reputation in the minds of participants as consumers.
Accommodated by READ, these factors turned out to be strong pre-
dictors of customers’ decisions to retain or abandon their cumrent
supplier. Our work borrows ideas from affective balance theory
(Grossberg & Gutowski, 1987) and the Leven and Levine [ 1996)
neural model of a consumer.

2. Experiment

This experiment investigates the links between (1) monetary
outcome and momentary affect, (2) previous emotional experience
and supplier reputation, and (3) provoked emotions and consumer
decisions to retain or abandon the current supplier. It was
comducted in May 2007 and involved 129 students of economics
from Sofia University. Its content bears resemblance to the
Bulgarian market of mobile phone services where two leading
providers offered indistinguishable quality and prices at the time
of the study. However, similarities with other markets in other
countries would have been just as useful.

In each of 17 rounds the participant sees on a computer screen
an advertised price (P,) offered by the current supplier, which
serves as orientation about what final price (P ) might be expected
(Fig. 1. No payments with real money are made. Prices F, were
adjusted to fluctuate slightly around an average monthly bill
obtained in a survey among another 40 students. Thus, F; varied
within 40 = 5 Bulgarian leva, and 1 lev is 0.5 euros.

1216 . Mengov et al. | Newral Netwarks 21 (2008) 1213- 1219

Pasitive reputatiaons, Zy., Z1n Megative reputations, Ziy, Zip

Supplier A Supplier B Supplier A Supplier B

Time, sec Time, sec AR Time, ser Time, s

X

Satisfaction, [X5]'

—p—n

Neurotransmitter, ¥,

-P,-F,

Rounas

Fig 3. Relating a participant's data to the READ model. Market is Saturated” All plots show varishles computed with that persen's best set of constants obtained with
simulated annealing Note the ¥; meurotransmitter rebease and increased disappointment in the last rounds due to larger unfavourable price differences AP, In addition,
because the participant switched from Supplier A to 8 at the end of the first round, 4's positive reputation did not change much for a while, while B's increased aver the next
couple of rounds.
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Decision making is an interdisciplinary field, which is explored with methods spanning from economic
experiments to brain scanning. [ts dominant paradigms such as utility theory, prospect theory, and the
modern dual-process theories all resort to formal algebraic models or non-mathematical postulates, and
remain purely phenomenological. An approach introduced by Grossherg deployed differential equations
describing neural networks and bridged the gap between dedsion science and the psychology of
oognitive-emotional interactions. However, the limits within which neural models can explain data from
real people’s actions are virtually untested and remain unknown. Here we show that a model built around
a recurrent gated dipole can successfully forecast individual economic choices in a complex laboratory
experiment. Unlike classical statistical and econometric technigues or machine learning algorithms,
our method calibrates the equations for each individual separately, and carries out prediction person-
by-person. It predicted very well the behaviour of 15%-20% of the participants in the experiment -
half of them extremely well - and was overall useful for two thirds of all 211 subjects. The model
succeeded with people who were guided by gut feelings and failed with these who had sophisticated
strategies. One hypothesis is that this neural network is the biological substrate of the cognitive system
for primitive-intuitive thinking, and so we believe that we have a model of how people choose economic
options by a simple form of intuition. We anticipate our study to be useful for further studies of human
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intuitive thinking as well as for analyses of economic systems populated by heterogeneous agents.

iD 2014 Elsevier Lrd. All rights reserved.

1. Introduction

General Charles de Gaulle of France once remarked that it
was difficult to govern a nation that had 246 different kinds of
cheese. Besides the obvious message about developed countries
being sophisticated, these words hint that economic choice is
not only important but also somewhat frustrating. Economists
have studied its more traditional aspects extensively and have
come to the understanding that the axioms used in economic
and political theory need revision (Sen, 1997). To better explain
and predict, they ought to account for the subtle rationality of
seemingly irrational decisions as in Amartya Sen’s famous example
of somebody taking a fruit from a basket with two fruits, but
refusing to do so when only ane is left. Behavioural economics has
addressed the general issue by relaxing its axioms as well as by
equipping them with more empirical knowledge about the human
being's cognitive characteristics.

* Tel: 43509 2 071 8070; fax: +350 28739941
E-muail celdress: g mergon@leb uni-sofia bg.

htep: e doi oeg] 10_1016{j.neunet 30 14,049,002
0833-6080/C 2014 Elsevier Ltd. Al rights reserved.

In the meantime, psychology has gone a long way in under-
standing human decision processes. Kahneman and Tversky's re-
search programme enriched economic analysis with findings about
the heuristic and emotional aspects of decision making (Kah-
neman, 2003, 2011; Tversky & Kahneman, 1971, 1981). In our
time, it has been established that a decision is reached in the
complex interaction of two cognitive systems. Different theories
have labelled them in different ways, but in general it is be-
lieved that there is one system for “intuitiv experiential”, ar
“impulsive” reasoning, also called “System 1", and another for
“logical”, “rational”, or “reflective” reasoning, also called “System
1" (Epstein, 1994, 2003; Kahneman & Frederick, 2002; Schnei-
der & Shiffrin, 1977; Stanovich & West, 2000; Strack & Deutsch,
2004). Recent reviews on the subject can be found in (Alds-
Ferrer & Strack, 2014; Brocas & Carrillo, 2014; Dayan, 2009),
while some of the recent modelling advances constitute [An-
dersen, Harrison, Lau, & Rurstrim, 2014; Fudenberg & Levine,
2006; Fudenberg, Levine, & Maniadis, 2014; Mukherjee, 2010). In
this wiew, the intuitive system is automatic, effortless, emotion-
driven, governed by habit, but difficult to change, while the log-
ical system is effortful, controlled and slow, but flexible and
able to adopt complex decision rules. Easy tasks are dealt with
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ARTICLE INFO ABSTRACT

Kepwands: Farrcasting cronomic chobce i hard becawse today we still da nat know cnough about buman metivation. 4
Decision meing fundamental proklem is the lack of knowledge abaut how the neural netwarks in the boain give riss o thinking

Virual social network
Emaoticsal economic choice

Mearal masdel
by

and decisian making. One way to address the issue has been to develop simplified eronomic experiments, in
wehich partcipants need il of Ll complexity and thei minds employ cognitive mechanisms, already well

gy and i Here we take a peural model for rudimestary

emotion generation and memarizing and use it as a guiding theory to understand derision making in an
experimental aligapaly market. Far the first time in that line of research, participants are put in a lab virtual
sacial netwark serving to cxchange opinioas about deals with compamics. On average, choices berame sigrifi
cantly mare predictable when people participate in the network, i contrast to warking alons with expert in-
formaticn. Calibrating the model far cach persan, we find that same people arc predicied with stariling precisian.

1. Introduction

Trying 10 predict people’s actions is hard because not enough is
known about the decision making mechanisms of the mind. Cognitive
peychology has reached a consensus that the brain does not compure
value or utility but conducts ad hoc and direct comparisons between the
available options in the specific ua[l.m, eircumstances, framing, and
context {Hie! et al., 2 s . 1). Any choice fore-
caating effort, therefore, should humbly acce-pl the prospect 10 Sccom-
plish very little. One approach could be statistical - gather data and use
it o anticipabe himan behavior in the long run. In our time, machine
learning with big data has done exactly that, with respectable suceess,
Itz main problem though, is that its key component - the artificial neural
network - i2 a black box, not capable of discoversing cognitive mecha-
nigms and causal relationships. This lack of strictly scientific knowledge
meakes the method less effective with unknown data and new situations,
posing &n upper bound 10 its achievements,

One alternative is the bottom-up approach developed by mathe-
matical neurcscience. I siudies how neural cireuits in the brain give rise
W cognilive phenomena like emotion, memory, leaming, ete. This
endeavor has already idenified the neural substrate of a variery of
complex paychological processes_ As the field matured, some researchers
made pionsering attempis - initially ar the concepual level only - 1o
envigion what neurobiological structures in the human beain could be at
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work in some economie, consumer, and utili
(Leven & Levine, 1996 £ Levine osaberg, 2001E

A parallel line of research cunﬂuc[ed experhnemg with mcmlueys o
identify brain areas and single neurons, believed o em:nde |iue useful-
nesg uF goods | A P

-based choices in genera

Al Z). These efforts, aJnngsLd.e the
entire l‘iel.d of neuroeconomics, have successfully related economic
eoncepls with brain regions in which they are processed. Yot never &
serious artempl was made a1 forecasting economic decisions, obviousy
due o the huge U\eumural gap between neural circuits and actual

inr their integration has prevailed.

Finally, another forecast-aiming appeoach sought to bridge the
nevran-behavior gap by designing lab economic experiments nesding
anly that kind of cognitive processes, for which neurabiological theory is
already available. One such study pul participants in the role of con-
sumers, choosing to retain or sbandon a service provider resembling a
maobile-phone operator (Mengov et al., 2008, Mengov & Nikolova
20 The authors applied an established peurcicience model of
apposite emotions [Grossberg & Sc 7 T

juk, 1987; Grossber
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The new neural
network should be
tested with
1. Interesting
problems and
2. Difficult data

L=
(7]

—
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Problem 1: The Lucas Critique

In the economy, if you have a forecasting model,
and it is working, it is no longer working.

(A paraphrase of a statement by Robert Lucas)



An abstract economic process — after two
regular cycles the agents rush and overshoot
In cycle 3, leading to a slump in cycle 4.

0.7F
0.6F
0.5}

0.4F

Economic Variable

0.3}
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The economic variable (prices, traded volumes,
Interest rates, etc) has five values at each
transaction moment. Blue colour indicates the first

two regular cycles, magenta the last two imbalanced
cycles.

Economic Variable




There are four market locations of different
size




Data, actually submitted to the neural
network, are ordered in time and from largest
to smallest market (only the two regular
cycles are shown)
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The NN’s internal memory

A B

Dipole Memory: Below Average Dipole Memory: Above Average Dipole Memory: Below Average Dipole Memory: Above Average

Ir

0.4 0.2 0

=

0.25 0.50

Figure 3. Dipole memory after one epoch of WTA training. A. 71 categories, p = 0.75 and r =
0.5. B. 400 categories, p = 1.0 and/or r = 0.005.



Some results

Table 3. Lucas Critique Problem: Distributed Training and Testing

P2 Clusters Test Data Rexante Rexpost

Results after Epoch 1 WTA, Epoch 2 WTA, and Epoch 3 Distributed training with Regular Cycles 1&2
data. Testing by 26 simultaneously activated neurons

0.0 422 Regular Cycles 1&2 0.8767 0.9816
0.5 431 Regular Cycles 1&2 0.8471 0.9850
0.75 493 Regular Cycles 1&2 0.7387 0.9903

Results after Epoch 4 distributed training with Imbalanced Cycles 3&4 data after Epoch 3
(line 1 above, p; = 0). Testing by 26 simultaneously activated neurons

0.0 422 Imbalanced Cycles 3&4 0.8645 0.9751

Results after Epoch 1 WTA and Epoch 2 WTA training with Regular Cycles 1&2 data, followed by
Epoch 3 training with Imbalanced Cycles 3&4 data. Testing by 26 neurons

0.0 422 Imbalanced Cycles 3&4 0.8879 0.9794
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Table 3. Lucas Critique Problem: Distributed Training and Testing

P2 Clusters Test Data Rexante Rexpost

Results after Epoch 1 WTA, Epoch 2 WTA, and Epoch 3 Distributed training with Regular Cycles 1&2
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0.5 431 Regular Cycles 1&2 0.8471 0.9850
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Fig. 4c is the Happy End
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Figure 4. Neural network performance. A. Imbalanced cycles 3 & 4 data as submitted. B.

Forecast ex-ante during WTA learning. C. Forecast ex-ante during distributed learning.
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Figure 4. Neural network performance. A. Imbalanced cycles 3 & 4 data as submitted. B.

Forecast ex-ante during WTA learning. C. Forecast ex-ante during distributed learning.



 That was a hard problem with synthetic data.

* Now comes a harder problem with real data.



Problem 2: Work Motivation and
Professional Life in Bulgaria 1994-1999

e Comprehensive measurement instrument from work
and organizational psychology

e 49 psychological and 4 demographic variables, 450
items

* Representative sample of 1107 people
* Longitudinal, 4 waves
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1058% inflation in 1997
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1058% inflation in 1997

Fundamental
economic restructuring

*---»

L

Spring 1994 Autumn 1995  Autumn 1997 Autumn 1999




1058% inflation in 1997

Fundamental
economic restructuring
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Spring 1994 Autumn 1995  Autumn 1997 Autumn 1999

In-Sample, Out-of-Sample,
Training Sample, Test Sample
Calibration Sample




To what extent can the new NN predict the
elements of work motivation and professional
life in 1999, based on all previous waves?




/O data plots
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Figure 5. Data for General Job Satisfaction (SA). Small dots are empirical observations. Bigger
dots are column averages. Joining lines highlight tendencies. Red and yellow colours indicate
data concentration, i.e., areas with more people behind a single small dot. Two out of five

predictors for SA are shown.



* Data are noisy
* Dependencies are almost linear

* Any forecasting method cannot be much
better than linear regression



An example: What predicts General Job
Satisfaction

inear regression analysis identified five
oredictors:

— Socioeconomic wellbeing

— Previous General Job Satisfaction
— Opportunity for Personal Growth
— Task ldentity

— Career Opportunities



Examples: A few people

A
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Opportunity for Personal Growth
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Figure 6. Examples of input data for General Job Satisfaction (SA) forecasting. (Panel data, input
variables are fromm moment t, output SA is from t + 1). A. A person who assessed their job

satisfaction, personal growth, and career opportunities way above average despite a low socio-
economic wellbeing. B. A person feeling somewhat dissatisfied with their job although all other



Table 4. Forecasting General Job Satisfaction (SA)

Description

Test with training sample #2,
SA 1995/97 (n = 583)

Test sample

SA 1997/99 (n = 384)

Pearson
Linear

Spearman
Rank

Kendall
Rank

Pearson
Linear

Spearman
Rank

Kendall
Rank

Benchmark: Linear regression
Panel data 1994/95 and 1995/97
5 independent variables

0.56583

0.56513

0.4145

0.4820

0.4832

0.3610

1 WTA epoch, fast commit, p = 1,
Data 1994/95 (n = 877)
Formed categories: 877

0.5406

0.5503

0.4121

0.4941

0.4861

0.3613

Ep 1: WTA, data 1994/95 (n = 877)
Ep 2: WTA, data 1995/97 (n = 583)
Fast commit, p = 1.
Formed 1460 categories

0.9585

0.9548

0.9377

0.4958

0.4882

0.3632

Ep 1. WTA, data 1994/95, p = 1
Ep 2: WTA, data 1995/97, p = 0.9
Fast commit, moderate recode (0.3),

Formed 1183 categories

0.6745

0.8768

0.7816

0.4960

0.4889

0.3636

Ep 1. WTA, data 1994/95, p = 1
Ep 2: WTA, data 1995/97, p = 0.7
Fast commit, moderate recode (0.3),

Formed 909 categories

0.6630

0.6685

0.56318

0.4991

0.4875

0.3627

Ep 1. WTA, data 1994/95, p = 1
Ep 2- WTA, data 1995/97, p = 1
Ep 3: DISTR (100 neurons), p> = 0,
Data 1995/97 Formed 1460 categories

0.6296

0.8644

0.7529

0.5007

0.4930

0.3659

Ep 1: WTA, data 1994/95, p = 1
Ep 2- DISTR (100 neurons), p> = 0.1,
Data 1995/97, fast commit, slow recode

(0.077). Formed 885 categones

0.56428

0.5566

0.4202

0.5036

0.4930

0.3668




Table 4. Forecasting General Job Satisfaction (SA)

Test with training sample #2,
SA 1995/97 (n = 583)

Test sample

61 997/99 (n = 3@

Description Pearson | Spearman | Kendall Pearson/ | Spearman | Kendall
Linear Rank Rank Linear Rank Rank
Benchmark: Linear regression
Panel data 1994/95 and 1995/97 0.6583 05513 04145 0.4820 04832 0.3610
5 independent variables
1 WTA epoch, fast commit, p = 1,
Data 1994/95 (n = 877) 0.56406 0.5503 0.4121 0.4941 0.4861 0.3613
Formed categories: 877
Ep 1: WTA, data 1994/95 (n = 877)
Ep2-WTA, data 1995097 (n=583) | gra5 | (9548 | 09377 04958 | 04882 | 03632
Fast commit, p = 1.
Formed 1460 categories
Ep 1. WTA, data 1994/95, p = 1
Ep 2. WTA, data 199597, p = 0.9 1 a75 | (g788 | 07816 04960 | 04889 | 03636
Fast commit, moderate recode (0.3),
Formed 1183 categories
Ep 1. WTA, data 1994/95, p = 1
Ep 2-WIA, data 1999097, p = 0.7 1 6590 | gggs | 05318 04991 | 04875 | 03627
Fast commit, moderate recode (0.3),
Formed 909 categories
Ep 1. WTA, data 1994/95, p = 1
Ep 2- WTA, data 1995/97, p = 1
Ep 3: DISTR (100 neurons), p, = 0, 0.6296 0.6844 0.7529 0.5007 0.4930 0.3659
Data 1995/97 Formed 1460 categories
p 1: WTA, data 19 p=
Ep 2- DISTR (100 neurons), p, = 0.1
995/97 fast commit Slow recode 0.56428 0.5566 0.4202 0.5036 0.4930 0.3668

(0.077). Formed 885 categones




Further results: the same NN produces
different forecasts

Table 5. Distributed forecasts for General Job Satisfaction (SA), best model with 100 active

neurons in Epoch 2 distributed training

Number of Test with training sample #2, Test sample
simultaneously SA 1995/97 (n = b83) SA 1997/99 (n = 364)
active neurons Pearson | Spearman | Kendall Pearson | Spearman | Kendall
during testing Linear Rank Rank Linear Rank Rank

1 03514 0.4437 0.3302 02604 0.3426 0.2491

5 04234 04809 0.3546 03528 04271 03156
b0 0.6317 0.5444 0.4083 0.4941 0.4839 0.3588
100 0.5428 0.5566 0.4202 0.5036 0.4930 0.3668
150 0.5364 0.5527 0.4153 0.4982 0.4838 0.3638
200 05297 0.5441 0.4075 05017 04922 0.3665
500 05114 0.5154 0.3816 0.4866 04797 0.3548




Forecasting: The best result
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distributed training epoch. A and B. The best result(R = 0.5036,Js achieved by a 100-neuron
forecast. C and D. A tiny bit worse, yet visually more compelling result is R = 0.5017, by a 200-

Figure 9. Forecasting General Job Satisfaction (SA) in 19i i Iier one WTA epoch followed by one

neuron forecast.



And the second best result
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Figure 9. Forecasting General Job Satisfaction (SA) in 1999 after one WTA epoch followed by one

distributed training epoch. A and B. The best result, R =0.5036, is achieved by a 100-neuron
forecast. C and D. A tiny bit worse, yet visually more compelling result '| by a 200-

neuron forecast.




In some cases, the NN is visually successful,
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Figure 8. Forecasting General Job Satisfaction (SA) in 1999 — two predictors are shown. A single-
neuron forecast after two WTA training epochs with 1994/95/97 data. Small and bigger black

dots are as in Figure 5. Magenta dots are predicted observations, blue dots are column averages

over predicted values. Joining lines highlight the tendencies.



* In 1999-2000, with the same data, MLP of
— two hidden layers
— ~0.5 mIn parameters,
— and backpropagation

(a “deep NN”) achieved forecasting precision by
1-2 p.p. above linear regression.

* The new NN achieves the same thing.



A Working Title...

A dART-Dipole neural system with
error-minimization learning



A Working Title...

An efficient error-minimizing dART-Dipole neural
network

A computationally efficient and explainable
dART-Dipole neural network

A dART-Dipole neural network combining
match-based and error-based learning



A Working Title...

dART-Dipole: A computationally efficient,
explainable, and novelty-detecting function
approximator



Thank youl!
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